Given that \(\sinh y = x\), show that
$$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$
Differentiate (*) to show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$
Find \(\int \frac { 1 } { \sqrt { 25 + 4 x ^ { 2 } } } \mathrm {~d} x\), expressing your answer in logarithmic form.
Use integration by substitution with \(2 x = 5 \sinh u\) to show that
$$\int \sqrt { 25 + 4 x ^ { 2 } } \mathrm {~d} x = \frac { 25 } { 4 } \left( \ln \left( \frac { 2 x } { 5 } + \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + \frac { 2 x } { 5 } \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + c$$
where \(c\) is an arbitrary constant.
\section*{OCR}