OCR MEI FP2 2014 June — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
TopicHyperbolic functions

4
  1. Given that \(\sinh y = x\), show that $$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$ Differentiate (*) to show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$
  2. Find \(\int \frac { 1 } { \sqrt { 25 + 4 x ^ { 2 } } } \mathrm {~d} x\), expressing your answer in logarithmic form.
  3. Use integration by substitution with \(2 x = 5 \sinh u\) to show that $$\int \sqrt { 25 + 4 x ^ { 2 } } \mathrm {~d} x = \frac { 25 } { 4 } \left( \ln \left( \frac { 2 x } { 5 } + \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + \frac { 2 x } { 5 } \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + c$$ where \(c\) is an arbitrary constant. \section*{OCR}