Prove, using exponential functions, that \(\cosh ^ { 2 } u - \sinh ^ { 2 } u = 1\).
Given that \(y = \operatorname { arsinh } x\), show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$
and that
$$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$