OCR MEI FP2 2013 June — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
TopicHyperbolic functions

4
  1. Prove, using exponential functions, that \(\cosh ^ { 2 } u - \sinh ^ { 2 } u = 1\).
  2. Given that \(y = \operatorname { arsinh } x\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$ and that $$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$
  3. Show that $$\int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { 4 + 9 x ^ { 2 } } } \mathrm {~d} x = \frac { 1 } { 3 } \ln ( 3 + \sqrt { 10 } )$$
  4. Find, in exact logarithmic form, $$\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } \operatorname { arsinh } x \mathrm {~d} x$$
This paper (2 questions)
View full paper