A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q8
OCR FP2 2007 January — Question 8
Exam Board
OCR
Module
FP2 (Further Pure Mathematics 2)
Year
2007
Session
January
Topic
Hyperbolic functions
8
Define tanh \(y\) in terms of \(\mathrm { e } ^ { y }\) and \(\mathrm { e } ^ { - y }\).
Given that \(y = \tanh ^ { - 1 } x\), where \(- 1 < x < 1\), prove that \(y = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
Find the exact solution of the equation \(3 \cosh x = 4 \sinh x\), giving the answer in terms of a logarithm.
Solve the equation $$\tanh ^ { - 1 } x + \ln ( 1 - x ) = \ln \left( \frac { 4 } { 5 } \right)$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9