Edexcel FP3 2018 June — Question 1

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2018
SessionJune
TopicHyperbolic functions

  1. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, show that, for \(x \in \mathbb { R }\)
$$\tanh x = \frac { \mathrm { e } ^ { 2 x } - 1 } { \mathrm { e } ^ { 2 x } + 1 }$$ (b) Hence, given that \(- 1 < \theta < 1\), prove that $$\operatorname { artanh } \theta = \frac { 1 } { 2 } \ln \left( \frac { 1 + \theta } { 1 - \theta } \right)$$ uestion 1 continued
\(\_\_\_\_\) 7