A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q6
OCR FP2 2014 June — Question 6
Exam Board
OCR
Module
FP2 (Further Pure Mathematics 2)
Year
2014
Session
June
Topic
Hyperbolic functions
6
Given that \(y = \cosh ^ { - 1 } x\), show that \(y = \ln \left( x + \sqrt { x ^ { 2 } - 1 } \right)\).
Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cosh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\).
Solve the equation \(\cosh x = 3\), giving your answers in logarithmic form.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9