Find eigenvalues/vectors of matrix combination

A question is this type if and only if it asks to find eigenvalues or eigenvectors of a matrix expression like A+kI, A⁻¹, AB, or A²+bA+cI given eigenvalues of A.

12 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2010 June Q1
4 marks Standard +0.3
1 Given that 5 is an eigenvalue of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 3 & 0 \\ 1 & 2 & 1 \\ - 1 & 3 & 4 \end{array} \right)$$ find a corresponding eigenvector. Hence find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 2 }\).
CAIE FP1 2013 June Q6
9 marks Standard +0.3
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 4 & - 5 & 3 \\ 3 & - 4 & 3 \\ 1 & - 1 & 2 \end{array} \right)$$ Show that \(\mathbf { e } = \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue. Find the other two eigenvalues of \(\mathbf { A }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } - 1 & 4 & 0 \\ - 1 & 3 & 1 \\ 1 & - 1 & 3 \end{array} \right)$$ Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { B }\) and deduce an eigenvector of the matrix \(\mathbf { A B }\), stating the corresponding eigenvalue.
CAIE FP1 2017 June Q5
6 marks Standard +0.3
5 The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & - 2 \\ 6 & 4 & - 6 \\ 6 & 5 & - 7 \end{array} \right)$$ has eigenvalues \(1 , - 1\) and - 2 .
  1. Find a set of corresponding eigenvectors.
  2. The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \mathbf { A } - 2 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Write down the eigenvalues of \(\mathbf { B }\), and state a set of corresponding eigenvectors.
CAIE FP1 2018 June Q5
8 marks Standard +0.3
5 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\) with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 3 }\) and state the corresponding eigenvalue.
    It is given that $$\mathbf { A } = \left( \begin{array} { r r } 2 & 0 \\ - 1 & 3 \end{array} \right) .$$
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { 3 } + \mathbf { I } = \mathbf { P } \mathbf { D } \mathbf { P } ^ { - 1 }$$ where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
CAIE FP1 2019 June Q9
10 marks Standard +0.8
9 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\), with corresponding eigenvalue \(\lambda ^ { 2 }\).
    The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { c c c } n & 1 & 3 \\ 0 & 2 n & 0 \\ 0 & 0 & 3 n \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + n \mathbf { I } ) ^ { 2 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(n\) is a non-zero integer.
  2. Find, in terms of \(n\), a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { B } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
CAIE FP1 2013 November Q11 OR
Standard +0.3
The vector \(\mathbf { e }\) is an eigenvector of each of the \(3 \times 3\) matrices \(\mathbf { A }\) and \(\mathbf { B }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively. Justifying your answer, state an eigenvalue of \(\mathbf { A } + \mathbf { B }\). The matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 6 & - 1 & - 6 \\ 1 & 0 & - 2 \\ 3 & - 1 & - 3 \end{array} \right)$$ has eigenvectors \(\left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right) , \left( \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right)\). Find the corresponding eigenvalues. The matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { r r r } 8 & - 2 & - 8 \\ 2 & 0 & - 4 \\ 4 & - 2 & - 4 \end{array} \right) ,$$ also has eigenvectors \(\left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right) , \left( \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right)\), for which \(- 2,2,4\), respectively, are corresponding eigenvalues. The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \mathbf { A } + \mathbf { B } - 5 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. State the eigenvalues of \(\mathbf { M }\). Find matrices \(\mathbf { R }\) and \(\mathbf { S }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } ^ { 5 } = \mathbf { R D S }\).
[0pt] [You should show clearly all the elements of the matrices \(\mathbf { R } , \mathbf { S }\) and \(\mathbf { D }\).] \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2018 November Q5
8 marks Standard +0.3
5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  1. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
    The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1 \\ - 1 & 2 & 3 \\ 1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) as eigenvectors.
  2. Find the corresponding eigenvalues.
    The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) respectively.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2018 November Q2
6 marks Standard +0.8
2 It is given that $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 3 & 1 \\ 0 & - 2 & 1 \\ 0 & 0 & 1 \end{array} \right)$$
  1. Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right)\).
  2. Write down the negative eigenvalue of \(\mathbf { A }\) and find a corresponding eigenvector.
  3. Find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 6 }\).
CAIE FP1 2013 November Q7
10 marks Standard +0.3
7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
CAIE FP1 2013 November Q10
12 marks
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 1 \end{array} \right) + s \left( \begin{array} { l } 1 \\ 0 \\ 1 \end{array} \right) + t \left( \begin{array} { r } 1 \\ - 1 \\ - 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
CAIE FP1 2013 November Q16
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 1 \end{array} \right) + s \left( \begin{array} { l } 1 \\ 0 \\ 1 \end{array} \right) + t \left( \begin{array} { r } 1 \\ - 1 \\ - 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis. 11 Answer only one of the following two alternatives. \section*{EITHER} State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\). Simplify $$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$ Hence find the real factors of $$x ^ { 5 } - 1$$ Express the six roots of the equation $$x ^ { 6 } - x ^ { 3 } + 1 = 0$$ as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\). Hence find the real factors of $$x ^ { 6 } - x ^ { 3 } + 1$$ OR Given that $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$ and that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\).
AQA Further Paper 1 2022 June Q4
1 marks Standard +0.3
4 The vector \(\mathbf { v }\) is an eigenvector of the matrix \(\mathbf { N }\) with corresponding eigenvalue 4
The vector \(\mathbf { v }\) is also an eigenvector of the matrix \(\mathbf { M }\) with corresponding eigenvalue 3
Given that $$\mathbf { N M } ^ { 2 } \mathbf { v } = \lambda \mathbf { v }$$ find the value of \(\lambda\) Circle your answer.
[0pt] [1 mark]
102436144