CAIE FP1 2018 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicInvariant lines and eigenvalues and vectors

5 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\) with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 3 }\) and state the corresponding eigenvalue.
    It is given that $$\mathbf { A } = \left( \begin{array} { r r } 2 & 0
    - 1 & 3 \end{array} \right) .$$
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { 3 } + \mathbf { I } = \mathbf { P } \mathbf { D } \mathbf { P } ^ { - 1 }$$ where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.