AQA Further Paper 1 2024 June — Question 6

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2024
SessionJune
TopicProof by induction

6 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$\begin{aligned} u _ { 1 } & = 1
u _ { n + 1 } & = u _ { n } + 3 n \end{aligned}$$ Prove by induction that for all integers \(n \geq 1\) $$u _ { n } = \frac { 3 } { 2 } n ^ { 2 } - \frac { 3 } { 2 } n + 1$$