| Exam Board | AQA |
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2024 |
| Session | June |
| Topic | Proof by induction |
6 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$\begin{aligned}
u _ { 1 } & = 1
u _ { n + 1 } & = u _ { n } + 3 n
\end{aligned}$$
Prove by induction that for all integers \(n \geq 1\)
$$u _ { n } = \frac { 3 } { 2 } n ^ { 2 } - \frac { 3 } { 2 } n + 1$$