CAIE FP1 2018 June — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicProof by induction

9 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 8\) and $$u _ { r + 1 } = \frac { 5 u _ { r } - 3 } { 4 }$$ for all \(r\).
  1. Prove by mathematical induction that $$u _ { n } = 4 \left( \frac { 5 } { 4 } \right) ^ { n } + 3$$ for all positive integers \(n\).
  2. Deduce the set of values of \(x\) for which the infinite series $$\left( u _ { 1 } - 3 \right) x + \left( u _ { 2 } - 3 \right) x ^ { 2 } + \ldots + \left( u _ { r } - 3 \right) x ^ { r } + \ldots$$ is convergent.
  3. Use the result given in part (i) to find surds \(a\) and \(b\) such that $$\sum _ { n = 1 } ^ { N } \ln \left( u _ { n } - 3 \right) = N ^ { 2 } \ln a + N \ln b .$$