| Exam Board | AQA |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2012 |
| Session | January |
| Topic | Proof by induction |
4 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = \frac { 3 } { 4 } \quad u _ { n + 1 } = \frac { 3 } { 4 - u _ { n } }$$
Prove by induction that, for all \(n \geqslant 1\),
$$u _ { n } = \frac { 3 ^ { n + 1 } - 3 } { 3 ^ { n + 1 } - 1 }$$