Find derivative of polynomial

Differentiate polynomial expressions with integer and fractional powers, including simplification.

88 questions · Moderate -0.9

Edexcel P1 2020 January Q3
Easy -1.3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28839dd5-b9c1-4cbd-981e-8f79c43ba086-06_652_654_269_646} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = x ^ { 2 } + 3 x - 2\) The point \(P ( 3,16 )\) lies on the curve.
  1. Find the gradient of the tangent to the curve at \(P\). The point \(Q\) with \(x\) coordinate \(3 + h\) also lies on the curve.
  2. Find, in terms of \(h\), the gradient of the line \(P Q\). Write your answer in simplest form.
  3. Explain briefly the relationship between the answer to (b) and the answer to (a).
Edexcel P1 2022 June Q10
Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3cf69966-e825-4ff0-a6e8-c5dfdc92c53f-28_655_869_255_541} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of the curve \(C\) with equation $$y = \frac { 2 } { 7 } x ^ { 3 } + \frac { 1 } { 7 } x ^ { 2 } - \frac { 5 } { 2 } x + k$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) The line \(l\), shown in Figure 5, is the normal to \(C\) at the point \(A\) with \(x\) coordinate \(- \frac { 7 } { 2 }\) Given that \(l\) is also a tangent to \(C\) at the point \(B\),
  2. show that the \(x\) coordinate of the point \(B\) is a solution of the equation $$12 x ^ { 2 } + 4 x - 33 = 0$$
  3. Hence find the \(x\) coordinate of \(B\), justifying your answer. Given that the \(y\) intercept of \(l\) is - 1
  4. find the value of \(k\).
    \includegraphics[max width=\textwidth, alt={}]{3cf69966-e825-4ff0-a6e8-c5dfdc92c53f-32_2640_1840_118_114}
Edexcel P1 2019 October Q7
Moderate -0.8
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{50ec901b-b6b6-4b72-85bd-a084f313c99b-16_648_822_296_561} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows part of the curve with equation \(y = 2 x ^ { 2 } + 5\) The point \(P ( 2,13 )\) lies on the curve.
  1. Find the gradient of the tangent to the curve at \(P\). The point \(Q\) with \(x\) coordinate \(2 + h\) also lies on the curve.
  2. Find, in terms of \(h\), the gradient of the line \(P Q\). Give your answer in simplest form.
  3. Explain briefly the relationship between the answer to (b) and the answer to (a).
Edexcel C12 2015 January Q15
Moderate -0.3
15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b99072a-cd16-4c1d-9e44-085926a3ba24-24_591_570_255_678} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the curve \(C\) with equation $$y = x ^ { 3 } + 10 x ^ { \frac { 3 } { 2 } } + k x , \quad x \geqslant 0$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) The point \(P\) on the curve \(C\) is a minimum turning point.
    Given that the \(x\) coordinate of \(P\) is 4
  2. show that \(k = - 78\) The line through \(P\) parallel to the \(x\)-axis cuts the \(y\)-axis at the point \(N\).
    The finite region \(R\), shown shaded in Figure 5, is bounded by \(C\), the \(y\)-axis and \(P N\).
  3. Use integration to find the area of \(R\).
Edexcel C12 2019 January Q3
Moderate -0.8
3. A curve has equation $$y = \sqrt { 2 } x ^ { 2 } - 6 \sqrt { x } + 4 \sqrt { 2 } , \quad x > 0$$ Find the gradient of the curve at the point \(P ( 2,2 \sqrt { 2 } )\).
Write your answer in the form \(a \sqrt { 2 }\), where \(a\) is a constant.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\(L\)
Edexcel C12 2019 June Q4
Moderate -0.8
4. Given that $$y = 5 x ^ { 2 } + \frac { 1 } { 2 x } + \frac { 2 x ^ { 4 } - 8 } { 5 \sqrt { x } } \quad x > 0$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in its simplest form.
(6)
HAVI SIHI NI JINM ION OCVIIV SIHI NI JINAM ION OAVIUV SIHI NI JIIIM ION OC
Edexcel C12 Specimen Q4
Easy -1.2
4. Given that \(y = 2 x ^ { 5 } + 7 + \frac { 1 } { x ^ { 3 } } , x \neq 0\), find, in their simplest form,
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\int y \mathrm {~d} x\).
Edexcel C1 2006 January Q4
Easy -1.2
4. Given that \(y = 2 x ^ { 2 } - \frac { 6 } { x ^ { 3 } } , x \neq 0\),
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. find \(\int y \mathrm {~d} x\).
Edexcel C1 2006 January Q9
Easy -1.2
9. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{815e288c-0140-4c12-9e89-b0bb4fb1a8c1-12_812_1088_317_427}
\end{figure} Figure 2 shows part of the curve \(C\) with equation $$y = ( x - 1 ) \left( x ^ { 2 } - 4 \right) .$$ The curve cuts the \(x\)-axis at the points \(P , ( 1,0 )\) and \(Q\), as shown in Figure 2.
  1. Write down the \(x\)-coordinate of \(P\), and the \(x\)-coordinate of \(Q\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 } - 2 x - 4\).
  3. Show that \(y = x + 7\) is an equation of the tangent to \(C\) at the point ( \(- 1,6\) ). The tangent to \(C\) at the point \(R\) is parallel to the tangent at the point ( \(- 1,6\) ).
  4. Find the exact coordinates of \(R\).
Edexcel C1 2007 January Q1
Easy -1.8
  1. Given that
$$y = 4 x ^ { 3 } - 1 + 2 x ^ { \frac { 1 } { 2 } } , \quad x > 0 ,$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
\includegraphics[max width=\textwidth, alt={}, center]{fff086fd-f5d8-45b7-8db1-8b22ba5aab31-02_29_45_2690_1852}
Edexcel C1 2007 January Q8
Moderate -0.8
8. The curve \(C\) has equation \(y = 4 x + 3 x ^ { \frac { 3 } { 2 } } - 2 x ^ { 2 } , \quad x > 0\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the point \(P ( 4,8 )\) lies on \(C\).
  3. Show that an equation of the normal to \(C\) at the point \(P\) is $$3 y = x + 20 .$$ The normal to \(C\) at \(P\) cuts the \(x\)-axis at the point \(Q\).
  4. Find the length \(P Q\), giving your answer in a simplified surd form.
Edexcel C1 2008 January Q5
Easy -1.2
5. (a) Write \(\frac { 2 \sqrt { } x + 3 } { x }\) in the form \(2 x ^ { p } + 3 x ^ { q }\) where \(p\) and \(q\) are constants. Given that \(y = 5 x - 7 + \frac { 2 \sqrt { } x + 3 } { x } , \quad x > 0\),
(b) find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying the coefficient of each term.
Edexcel C1 2008 January Q9
Moderate -0.3
9. The curve \(C\) has equation \(y = \mathrm { f } ( x ) , x > 0\), and \(\mathrm { f } ^ { \prime } ( x ) = 4 x - 6 \sqrt { } x + \frac { 8 } { x ^ { 2 } }\). Given that the point \(P ( 4,1 )\) lies on \(C\),
  1. find \(\mathrm { f } ( x )\) and simplify your answer.
  2. Find an equation of the normal to \(C\) at the point \(P ( 4,1 )\).
Edexcel C1 2009 January Q6
Easy -1.3
  1. Given that \(\frac { 2 x ^ { 2 } - x ^ { \frac { 3 } { 2 } } } { \sqrt { } x }\) can be written in the form \(2 x ^ { p } - x ^ { q }\),
    1. write down the value of \(p\) and the value of \(q\).
    Given that \(y = 5 x ^ { 4 } - 3 + \frac { 2 x ^ { 2 } - x ^ { \frac { 3 } { 2 } } } { \sqrt { } x }\),
  2. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying the coefficient of each term.
Edexcel C1 2009 January Q11
Moderate -0.3
  1. The curve \(C\) has equation
$$y = 9 - 4 x - \frac { 8 } { x } , \quad x > 0$$ The point \(P\) on \(C\) has \(x\)-coordinate equal to 2 .
  1. Show that the equation of the tangent to \(C\) at the point \(P\) is \(y = 1 - 2 x\).
  2. Find an equation of the normal to \(C\) at the point \(P\). The tangent at \(P\) meets the \(x\)-axis at \(A\) and the normal at \(P\) meets the \(x\)-axis at \(B\).
  3. Find the area of triangle \(A P B\).
Edexcel C1 2010 January Q1
Easy -1.8
Given that \(y = x ^ { 4 } + x ^ { \frac { 1 } { 3 } } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Edexcel C1 2011 January Q11
Moderate -0.8
11. The curve \(C\) has equation $$y = \frac { 1 } { 2 } x ^ { 3 } - 9 x ^ { \frac { 3 } { 2 } } + \frac { 8 } { x } + 30 , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the point \(P ( 4 , - 8 )\) lies on \(C\).
  3. Find an equation of the normal to \(C\) at the point \(P\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    \includegraphics[max width=\textwidth, alt={}, center]{95e11fd7-765c-477d-800b-7574bc1af81f-15_113_129_2405_1816}
Edexcel C1 2012 January Q1
Easy -1.2
Given that \(y = x ^ { 4 } + 6 x ^ { \frac { 1 } { 2 } }\), find in their simplest form
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\int y \mathrm {~d} x\)
Edexcel C1 2013 January Q11
Moderate -0.8
11. The curve \(C\) has equation $$y = 2 x - 8 \sqrt { } x + 5 , \quad x \geqslant 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in its simplest form. The point \(P\) on \(C\) has \(x\)-coordinate equal to \(\frac { 1 } { 4 }\)
  2. Find the equation of the tangent to \(C\) at the point \(P\), giving your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants. The tangent to \(C\) at the point \(Q\) is parallel to the line with equation \(2 x - 3 y + 18 = 0\)
  3. Find the coordinates of \(Q\).
Edexcel C1 2006 June Q5
Easy -1.3
5. Differentiate with respect to \(x\)
  1. \(x ^ { 4 } + 6 \sqrt { } x\),
  2. \(\frac { ( x + 4 ) ^ { 2 } } { x }\).
Edexcel C1 2006 June Q10
Moderate -0.3
10. The curve \(C\) with equation \(y = \mathrm { f } ( x ) , x \neq 0\), passes through the point ( \(3,7 \frac { 1 } { 2 }\) ). Given that \(\mathrm { f } ^ { \prime } ( x ) = 2 x + \frac { 3 } { x ^ { 2 } }\),
  1. find \(\mathrm { f } ( x )\).
  2. Verify that \(f ( - 2 ) = 5\).
  3. Find an equation for the tangent to \(C\) at the point ( \(- 2,5\) ), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C1 2007 June Q10
Moderate -0.3
10. The curve \(C\) has equation \(y = x ^ { 2 } ( x - 6 ) + \frac { 4 } { x } , x > 0\). The points \(P\) and \(Q\) lie on \(C\) and have \(x\)-coordinates 1 and 2 respectively.
  1. Show that the length of \(P Q\) is \(\sqrt { } 170\).
  2. Show that the tangents to \(C\) at \(P\) and \(Q\) are parallel.
  3. Find an equation for the normal to \(C\) at \(P\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    \(\_\_\_\_\)}
Edexcel C1 2008 June Q4
Easy -1.3
4. $$\mathrm { f } ( x ) = 3 x + x ^ { 3 } , \quad x > 0 .$$
  1. Differentiate to find \(\mathrm { f } ^ { \prime } ( x )\). Given that \(\mathrm { f } ^ { \prime } ( x ) = 15\),
  2. find the value of \(x\).
Edexcel C1 2009 June Q3
Easy -1.2
3. Given that \(y = 2 x ^ { 3 } + \frac { 3 } { x ^ { 2 } } , x \neq 0\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\int y \mathrm {~d} x\), simplifying each term.
Edexcel C1 2009 June Q11
Standard +0.8
11. The curve \(C\) has equation $$y = x ^ { 3 } - 2 x ^ { 2 } - x + 9 , \quad x > 0$$ The point \(P\) has coordinates (2, 7).
  1. Show that \(P\) lies on \(C\).
  2. Find the equation of the tangent to \(C\) at \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants. The point \(Q\) also lies on \(C\).
    Given that the tangent to \(C\) at \(Q\) is perpendicular to the tangent to \(C\) at \(P\),
  3. show that the \(x\)-coordinate of \(Q\) is \(\frac { 1 } { 3 } ( 2 + \sqrt { 6 } )\).