Edexcel C12 2015 January — Question 15

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2015
SessionJanuary
TopicDifferentiation Applications
TypeFind derivative of polynomial

15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b99072a-cd16-4c1d-9e44-085926a3ba24-24_591_570_255_678} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the curve \(C\) with equation $$y = x ^ { 3 } + 10 x ^ { \frac { 3 } { 2 } } + k x , \quad x \geqslant 0$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) The point \(P\) on the curve \(C\) is a minimum turning point.
    Given that the \(x\) coordinate of \(P\) is 4
  2. show that \(k = - 78\) The line through \(P\) parallel to the \(x\)-axis cuts the \(y\)-axis at the point \(N\).
    The finite region \(R\), shown shaded in Figure 5, is bounded by \(C\), the \(y\)-axis and \(P N\).
  3. Use integration to find the area of \(R\).