CAIE
FP1
2014
June
Q7
10 marks
Standard +0.3
7 The curve \(C\) has parametric equations
$$x = \sin t , \quad y = \sin 2 t , \quad \text { for } 0 \leqslant t \leqslant \pi .$$
Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\).
Hence, or otherwise, find the coordinates of the stationary points on \(C\) and determine their nature.
CAIE
FP1
2013
November
Q4
7 marks
Standard +0.3
4 A curve has parametric equations
$$x = 2 \theta - \sin 2 \theta , \quad y = 1 - \cos 2 \theta , \quad \text { for } - 3 \pi \leqslant \theta \leqslant 3 \pi$$
Show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \cot \theta$$
except for certain values of \(\theta\), which should be stated.
Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(\theta = \frac { 1 } { 4 } \pi\).
CAIE
FP1
2017
Specimen
Q1
4 marks
Standard +0.8
1 The curve \(C\) is defined parametrically by
$$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi$$
Show that, at the point with parameter \(t\),
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$
CAIE
FP1
2015
November
Q1
4 marks
Standard +0.8
1 The curve \(C\) is defined parametrically by
$$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi .$$
Show that, at the point with parameter \(t\),
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$