5 The curve \(C\) has parametric equations
$$x = 3 t + 2 t ^ { - 1 } + a t ^ { 3 } , \quad y = 4 t - \frac { 3 } { 2 } t ^ { - 1 } + b t ^ { 3 } , \quad \text { for } 1 \leqslant t \leqslant 2$$
where \(a\) and \(b\) are constants.
- It is given that \(a = \frac { 2 } { 3 }\) and \(b = - \frac { 1 } { 2 }\).
Show that \(\left( \frac { d x } { d t } \right) ^ { 2 } + \left( \frac { d y } { d t } \right) ^ { 2 } = \frac { 25 } { 4 } \left( t ^ { 2 } + t ^ { - 2 } \right) ^ { 2 }\) and find the exact length of \(C\).
- It is given instead that \(\mathrm { a } = \mathrm { b } = 0\).
Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) when \(t = 1\).
[0pt]
[4]
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_68_1569_383_328}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_62_1570_475_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_63_1570_566_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_61_1570_657_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_69_1570_740_324}
........................................................................................................................................ .
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_70_1570_920_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_72_1572_1009_322}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_71_1570_1101_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_72_1570_1192_324}
\includegraphics[max width=\textwidth, alt={}, center]{a921c01f-4d8e-47cf-9f34-d7d7bf9c9fdd-09_70_1570_1281_324}