PDF to CDF derivation

Given a probability density function (often piecewise), find the cumulative distribution function by integration, specifying it for all values.

21 questions

CAIE Further Paper 4 2021 June Q6
6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 8 } & 0 \leqslant x < 1
\frac { 1 } { 28 } ( 8 - x ) & 1 \leqslant x \leqslant 8
0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
  2. Find the value of the constant \(a\) such that \(\mathrm { P } ( \mathrm { X } \leqslant \mathrm { a } ) = \frac { 5 } { 7 }\).
    The random variable \(Y\) is given by \(Y = \sqrt [ 3 ] { X }\).
  3. Find the probability density function of \(Y\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 4 2023 June Q1
1 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 6 } \left( x ^ { - \frac { 1 } { 3 } } - x ^ { - \frac { 2 } { 3 } } \right) & 1 \leqslant x \leqslant 27
0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = X ^ { \frac { 1 } { 3 } }\).
  2. Find the probability density function of \(Y\).
  3. Find the exact value of the median of \(Y\).
OCR S3 2008 January Q7
7 The continuous random variable \(T\) has probability density function given by $$f ( t ) = \begin{cases} 4 t ^ { 3 } & 0 < t \leqslant 1
0 & \text { otherwise } \end{cases}$$
  1. Obtain the cumulative distribution function of \(T\).
  2. Find the cumulative distribution function of \(H\), where \(H = \frac { 1 } { T ^ { 4 } }\), and hence show that the probability density function of \(H\) is given by \(\mathrm { g } ( h ) = \frac { 1 } { h ^ { 2 } }\) over an interval to be stated.
  3. Find \(\mathrm { E } \left( 1 + 2 H ^ { - 1 } \right)\).
OCR MEI S3 2010 January Q2
2
  1. A continuous random variable, \(X\), has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 72 } \left( 8 x - x ^ { 2 } \right) & 2 \leqslant x \leqslant 8
    0 & \text { otherwise } \end{cases}$$
    1. Find \(\mathrm { F } ( x )\), the cumulative distribution function of \(X\).
    2. Sketch \(\mathrm { F } ( x )\).
    3. The median of \(X\) is \(m\). Show that \(m\) satisfies the equation \(m ^ { 3 } - 12 m ^ { 2 } + 148 = 0\). Verify that \(m \approx 4.42\).
  2. The random variable in part (a) is thought to model the weights, in kilograms, of lambs at birth. The birth weights, in kilograms, of a random sample of 12 lambs, given in ascending order, are as follows. $$\begin{array} { l l l l l l l l l l l l } 3.16 & 3.62 & 3.80 & 3.90 & 4.02 & 4.72 & 5.14 & 6.36 & 6.50 & 6.58 & 6.68 & 6.78 \end{array}$$ Test at the 5\% level of significance whether a median of 4.42 is consistent with these data.
CAIE FP2 2016 June Q8
8 The random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} 2 \mathrm { e } ^ { - 2 x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
  2. Find the median value of \(X\). The random variable \(Y\) is defined by \(Y = \mathrm { e } ^ { X }\).
  3. Find the probability density function of \(Y\).
CAIE FP2 2019 June Q7
7 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 4 x ^ { 2 } } + \frac { 1 } { 4 } & 1 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
  2. Find the exact value of the interquartile range of \(X\).
CAIE FP2 2011 November Q6
6 The continuous random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} 0 & x < 1
\frac { 1 } { 2 } & 1 \leqslant x \leqslant 3
0 & x > 3 \end{cases}$$ Find the distribution function of \(X\). The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Find
  1. the probability density function of \(Y\),
  2. the expected value and variance of \(Y\).
Edexcel S2 2014 January Q6
  1. The continuous random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c c } k ( x + 1 ) ^ { 2 } & - 1 \leqslant x \leqslant 1
k ( 6 - 2 x ) & 1 < x \leqslant 3
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\).
  2. Show that the value of \(k\) is \(\frac { 3 } { 20 }\)
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Find the median of \(X\), giving your answer to 3 significant figures.
Edexcel S2 2017 January Q7
7. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$f ( x ) = \begin{cases} \frac { 1 } { 20 } x ^ { 3 } & 0 \leqslant x \leqslant 2
\frac { 1 } { 10 } ( 6 - x ) & 2 < x \leqslant 6
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of \(\mathrm { f } ( x )\) for all values of \(x\).
  2. Write down the mode of \(X\).
  3. Show that \(\mathrm { P } ( X > 2 ) = 0.8\)
  4. Define fully the cumulative distribution function \(\mathrm { F } ( x )\). Given that \(\mathrm { P } ( X < a \mid X > 2 ) = \frac { 5 } { 8 }\)
  5. find the value of \(\mathrm { F } ( a )\).
  6. Hence, or otherwise, find the value of \(a\). Give your answer to 3 significant figures.
Edexcel S2 2022 June Q6
  1. The continuous random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} 0.1 x & 0 \leqslant x < 2
k x ( 8 - x ) & 2 \leqslant x < 4
a & 4 \leqslant x < 6
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are constants.
It is known that \(\mathrm { P } ( X < 4 ) = \frac { 31 } { 45 }\)
  1. Find the exact value of \(k\)
    1. Find the exact value of \(a\)
    2. Find the exact value of \(\mathrm { P } ( 0 \leqslant X \leqslant 5.5 )\)
  2. Specify fully the cumulative distribution function of \(X\)
Edexcel S2 2009 January Q7
  1. A random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c l } - \frac { 2 } { 9 } x + \frac { 8 } { 9 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{array} \right.$$
  1. Show that the cumulative distribution function \(\mathrm { F } ( x )\) can be written in the form \(a x ^ { 2 } + b x + c\), for \(1 \leqslant x \leqslant 4\) where \(a , b\) and \(c\) are constants.
  2. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  3. Show that the upper quartile of \(X\) is 2.5 and find the lower quartile. Given that the median of \(X\) is 1.88
  4. describe the skewness of the distribution. Give a reason for your answer.
Edexcel S2 2002 June Q7
7. The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { x } { 15 } , & 0 \leq x \leq 2
\frac { 2 } { 15 } , & 2 < x < 7
\frac { 4 } { 9 } - \frac { 2 x } { 45 } , & 7 \leq x \leq 10
0 , & \text { otherwise } \end{cases}$$
  1. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
    1. Find expressions for the cumulative distribution function, \(\mathrm { F } ( x )\), for \(0 \leq x \leq 2\) and for \(7 \leq x \leq 10\).
    2. Show that for \(2 < x < 7 , \mathrm {~F} ( x ) = \frac { 2 x } { 15 } - \frac { 2 } { 15 }\).
    3. Specify \(\mathrm { F } ( x )\) for \(x < 0\) and for \(x > 10\).
  2. Find \(\mathrm { P } ( X \leq 8.2 )\).
  3. Find, to 3 significant figures, \(\mathrm { E } ( X )\).
Edexcel S2 2012 June Q7
7. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } \frac { x ^ { 2 } } { 45 } & 0 \leqslant x \leqslant 3
\frac { 1 } { 5 } & 3 < x < 4
\frac { 1 } { 3 } - \frac { x } { 30 } & 4 \leqslant x \leqslant 10
0 & \text { otherwise } \end{array} . \right.$$
  1. Sketch \(\mathrm { f } ( x )\) for \(0 \leqslant x \leqslant 10\)
  2. Find the cumulative distribution function \(\mathrm { F } ( x )\) for all values of \(x\).
  3. Find \(\mathrm { P } ( X \leqslant 8 )\).
Edexcel S2 2014 June Q2
2. The length of time, in minutes, that a customer queues in a Post Office is a random variable, \(T\), with probability density function $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } c \left( 81 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 9
0 & \text { otherwise } \end{array} \right.$$ where \(c\) is a constant.
  1. Show that the value of \(c\) is \(\frac { 1 } { 486 }\)
  2. Show that the cumulative distribution function \(\mathrm { F } ( t )\) is given by $$\mathrm { F } ( t ) = \left\{ \begin{array} { c c } 0 & t < 0
    \frac { t } { 6 } - \frac { t ^ { 3 } } { 1458 } & 0 \leqslant t \leqslant 9
    1 & t > 9 \end{array} \right.$$
  3. Find the probability that a customer will queue for longer than 3 minutes. A customer has been queueing for 3 minutes.
  4. Find the probability that this customer will be queueing for at least 7 minutes. Three customers are selected at random.
  5. Find the probability that exactly 2 of them had to queue for longer than 3 minutes.
Edexcel S2 2014 June Q6
6. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$f ( x ) = \left\{ \begin{array} { c c } \frac { 2 x } { 9 } & 0 \leqslant x \leqslant 1
\frac { 2 } { 9 } & 1 < x < 4
\frac { 2 } { 3 } - \frac { x } { 9 } & 4 \leqslant x \leqslant 6
0 & \text { otherwise } \end{array} \right.$$
  1. Find \(\mathrm { E } ( X )\).
  2. Find the cumulative distribution function \(\mathrm { F } ( x )\) for all values of \(x\).
  3. Find the median of \(X\).
  4. Describe the skewness. Give a reason for your answer.
    \includegraphics[max width=\textwidth, alt={}, center]{caaa0133-5b13-4ca7-8e65-8543327c33fd-12_104_61_2412_1884}
Edexcel S2 2017 June Q6
6. The continuous random variable \(X\) has a probability density function $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } k ( x - 2 ) & 2 \leqslant x \leqslant 3
k & 3 < x < 5
k ( 6 - x ) & 5 \leqslant x \leqslant 6
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\).
  2. Show that the value of \(k\) is \(\frac { 1 } { 3 }\)
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Hence find the 90th percentile of the distribution.
  5. Find \(\mathrm { P } [ \mathrm { E } ( X ) < X < 5.5 ]\)
    Leave
    blank

    \hline END &
    \hline \end{tabular}
Edexcel S2 Specimen Q7
7. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$f ( x ) = \left\{ \begin{aligned} \frac { 1 } { 20 } x ^ { 3 } , & 1 \leq x \leq 3
0 , & \text { otherwise } \end{aligned} \right.$$
  1. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
  2. Calculate \(\mathrm { E } ( X )\).
  3. Show that the standard deviation of \(X\) is 0.459 to 3 decimal places.
  4. Show that for \(1 \leq x \leq 3 , \mathrm { P } ( X \leq x )\) is given by \(\frac { 1 } { 80 } \left( x ^ { 4 } - 1 \right)\) and specify fully the cumulative distribution function of \(X\).
  5. Find the interquartile range for the random variable \(X\). Some statisticians use the following formula to estimate the interquartile range: $$\text { interquartile range } = \frac { 4 } { 3 } \times \text { standard deviation. }$$
  6. Use this formula to estimate the interquartile range in this case, and comment.
AQA S2 2006 June Q7
7 The continuous random variable \(X\) has probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { 5 } ( 2 x + 1 ) & 0 \leqslant x \leqslant 1
\frac { 1 } { 15 } ( 4 - x ) ^ { 2 } & 1 < x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of f.
    1. Show that the cumulative distribution function, \(\mathrm { F } ( x )\), for \(0 \leqslant x \leqslant 1\) is $$\mathrm { F } ( x ) = \frac { 1 } { 5 } x ( x + 1 )$$
    2. Hence write down the value of \(\mathrm { P } ( X \leqslant 1 )\).
    3. Find the value of \(x\) for which \(\mathrm { P } ( X \geqslant x ) = \frac { 17 } { 20 }\).
    4. Find the lower quartile of the distribution.
AQA S2 2010 June Q7
7 The random variable \(X\) has probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { 2 } & 0 \leqslant x \leqslant 1
\frac { 1 } { 18 } ( x - 4 ) ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. State values for the median and the lower quartile of \(X\).
  2. Show that, for \(1 \leqslant x \leqslant 4\), the cumulative distribution function, \(\mathrm { F } ( x )\), of \(X\) is given by $$\mathrm { F } ( x ) = 1 + \frac { 1 } { 54 } ( x - 4 ) ^ { 3 }$$ (You may assume that \(\int ( x - 4 ) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 3 } ( x - 4 ) ^ { 3 } + c\).)
  3. Determine \(\mathrm { P } ( 2 \leqslant X \leqslant 3 )\).
    1. Show that \(q\), the upper quartile of \(X\), satisfies the equation \(( q - 4 ) ^ { 3 } = - 13.5\).
    2. Hence evaluate \(q\) to three decimal places.
      \includegraphics[max width=\textwidth, alt={}]{c31c5c67-834e-42ce-b4af-555890c393d5-19_2484_1709_223_153}
AQA S2 2011 June Q6
6 The continuous random variable \(X\) has the probability density function defined by $$f ( x ) = \begin{cases} \frac { 3 } { 8 } \left( x ^ { 2 } + 1 \right) & 0 \leqslant x \leqslant 1
\frac { 1 } { 4 } ( 5 - 2 x ) & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$
  1. The cumulative distribution function of \(X\) is denoted by \(\mathrm { F } ( x )\). Show that, for \(0 \leqslant x \leqslant 1\), $$\mathrm { F } ( x ) = \frac { 1 } { 8 } x \left( x ^ { 2 } + 3 \right)$$
  2. Hence, or otherwise, verify that the median value of \(X\) is 1 .
  3. Show that the upper quartile, \(q\), satisfies the equation \(q ^ { 2 } - 5 q + 5 = 0\) and hence that \(q = \frac { 1 } { 2 } ( 5 - \sqrt { 5 } )\).
  4. Calculate the exact value of \(\mathrm { P } ( q < X < 1.5 )\).
AQA S2 2013 June Q7
7 A continuous random variable \(X\) has the probability density function defined by $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } & 0 \leqslant x \leqslant 1
\frac { 1 } { 3 } ( 5 - 2 x ) & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{array} \right.$$
  1. Sketch the graph of f on the axes below.
    1. Find the cumulative distribution function, F , for \(0 \leqslant x \leqslant 1\).
    2. Hence, or otherwise, find the value of the lower quartile of \(X\).
    1. Show that the cumulative distribution function for \(1 \leqslant x \leqslant 2\) is defined by $$\mathrm { F } ( x ) = \frac { 1 } { 3 } \left( 5 x - x ^ { 2 } - 3 \right)$$
    2. Hence, or otherwise, find the value of the upper quartile of \(X\).
      \includegraphics[max width=\textwidth, alt={}, center]{03c1e107-3377-4b0d-9daf-7f70233c18b5-5_554_1050_1217_424}