Edexcel S2 2014 June — Question 2

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2014
SessionJune
TopicCumulative distribution functions
TypePDF to CDF derivation

2. The length of time, in minutes, that a customer queues in a Post Office is a random variable, \(T\), with probability density function $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } c \left( 81 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 9
0 & \text { otherwise } \end{array} \right.$$ where \(c\) is a constant.
  1. Show that the value of \(c\) is \(\frac { 1 } { 486 }\)
  2. Show that the cumulative distribution function \(\mathrm { F } ( t )\) is given by $$\mathrm { F } ( t ) = \left\{ \begin{array} { c c } 0 & t < 0
    \frac { t } { 6 } - \frac { t ^ { 3 } } { 1458 } & 0 \leqslant t \leqslant 9
    1 & t > 9 \end{array} \right.$$
  3. Find the probability that a customer will queue for longer than 3 minutes. A customer has been queueing for 3 minutes.
  4. Find the probability that this customer will be queueing for at least 7 minutes. Three customers are selected at random.
  5. Find the probability that exactly 2 of them had to queue for longer than 3 minutes.