7. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by
$$f ( x ) = \begin{cases} \frac { 1 } { 20 } x ^ { 3 } & 0 \leqslant x \leqslant 2
\frac { 1 } { 10 } ( 6 - x ) & 2 < x \leqslant 6
0 & \text { otherwise } \end{cases}$$
- Sketch the graph of \(\mathrm { f } ( x )\) for all values of \(x\).
- Write down the mode of \(X\).
- Show that \(\mathrm { P } ( X > 2 ) = 0.8\)
- Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
Given that \(\mathrm { P } ( X < a \mid X > 2 ) = \frac { 5 } { 8 }\)
- find the value of \(\mathrm { F } ( a )\).
- Hence, or otherwise, find the value of \(a\). Give your answer to 3 significant figures.