Edexcel S2 2017 June — Question 6

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2017
SessionJune
TopicCumulative distribution functions
TypePDF to CDF derivation

6. The continuous random variable \(X\) has a probability density function $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } k ( x - 2 ) & 2 \leqslant x \leqslant 3
k & 3 < x < 5
k ( 6 - x ) & 5 \leqslant x \leqslant 6
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\).
  2. Show that the value of \(k\) is \(\frac { 1 } { 3 }\)
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Hence find the 90th percentile of the distribution.
  5. Find \(\mathrm { P } [ \mathrm { E } ( X ) < X < 5.5 ]\)
    Leave
    blank

    \hline END &
    \hline \end{tabular}