7 A continuous random variable \(X\) has the probability density function defined by
$$\mathrm { f } ( x ) = \left\{ \begin{array} { c c }
x ^ { 2 } & 0 \leqslant x \leqslant 1
\frac { 1 } { 3 } ( 5 - 2 x ) & 1 \leqslant x \leqslant 2
0 & \text { otherwise }
\end{array} \right.$$
- Sketch the graph of f on the axes below.
- Find the cumulative distribution function, F , for \(0 \leqslant x \leqslant 1\).
- Hence, or otherwise, find the value of the lower quartile of \(X\).
- Show that the cumulative distribution function for \(1 \leqslant x \leqslant 2\) is defined by
$$\mathrm { F } ( x ) = \frac { 1 } { 3 } \left( 5 x - x ^ { 2 } - 3 \right)$$
- Hence, or otherwise, find the value of the upper quartile of \(X\).
\includegraphics[max width=\textwidth, alt={}, center]{03c1e107-3377-4b0d-9daf-7f70233c18b5-5_554_1050_1217_424}