1 The continuous random variable \(X\) has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 1 } { 6 } \left( x ^ { - \frac { 1 } { 3 } } - x ^ { - \frac { 2 } { 3 } } \right) & 1 \leqslant x \leqslant 27
0 & \text { otherwise } \end{cases}$$
- Find the cumulative distribution function of \(X\).
The random variable \(Y\) is defined by \(Y = X ^ { \frac { 1 } { 3 } }\). - Find the probability density function of \(Y\).
- Find the exact value of the median of \(Y\).