Polynomial Division & Manipulation

178 questions · 20 question types identified

Sort by: Question count | Difficulty
Algebraic Fraction Simplification

Questions asking to simplify rational expressions by factorising numerator and denominator, then cancelling common factors.

21 Moderate -0.7
11.8% of questions
Show example »
1 Simplify \(\frac { 20 - 5 x } { 6 x ^ { 2 } - 24 x }\).
View full question →
Easiest question Easy -1.3 »
9
  1. Simplify \(3 a ^ { 3 } b \times 4 ( a b ) ^ { 2 }\).
  2. Factorise \(x ^ { 2 } - 4\) and \(x ^ { 2 } - 5 x + 6\). Hence express \(\frac { x ^ { 2 } - 4 } { x ^ { 2 } - 5 x + 6 }\) as a fraction in its simplest form.
View full question →
Hardest question Standard +0.3 »
3 Factorise and hence simplify \(\frac { 3 x ^ { 2 } - 7 x + 4 } { x ^ { 2 } - 1 }\).
  1. Prove that 12 is a factor of \(3 n ^ { 2 } + 6 n\) for all even positive integers \(n\).
  2. Determine whether 12 is a factor of \(3 n ^ { 2 } + 6 n\) for all positive integers \(n\).
  3. Write \(x ^ { 2 } - 5 x + 8\) in the form \(( x - a ) ^ { 2 } + b\) and hence show that \(x ^ { 2 } - 5 x + 8 > 0\) for all values of \(x\).
  4. Sketch the graph of \(y = x ^ { 2 } - 5 x + 8\), showing the coordinates of the turning point.
  5. Find the set of values of \(x\) for which \(x ^ { 2 } - 5 x + 8 > 14\).
  6. If \(\mathrm { f } ( x ) = x ^ { 2 } - 5 x + 8\), does the graph of \(y = \mathrm { f } ( x ) - 10\) cross the \(x\)-axis? Show how you decide.
View full question →
Polynomial Division with Remainder Verification

Questions that ask to find the quotient when dividing a polynomial by a linear or quadratic divisor, and verify or show that the remainder equals a specific value.

19 Moderate -0.6
10.7% of questions
Show example »
1 Find the quotient and remainder when \(2 x ^ { 2 }\) is divided by \(x + 2\).
View full question →
Easiest question Easy -1.8 »
1 Find the quotient and remainder when \(2 x ^ { 2 }\) is divided by \(x + 2\).
View full question →
Hardest question Moderate -0.3 »
2 The polynomial \(x ^ { 3 } + 2 x ^ { 2 } + 2 x + 3\) is denoted by \(\mathrm { p } ( x )\).
  1. Find the remainder when \(\mathrm { p } ( x )\) is divided by \(x - 1\).
  2. Find the quotient and remainder when \(\mathrm { p } ( x )\) is divided by \(x ^ { 2 } + x - 1\).
View full question →
Range Restrictions of Rational Functions

Questions asking to prove that a rational function cannot take certain values (e.g., show y can take all real values, or show a < y < b has no solutions).

14 Standard +1.0
7.9% of questions
Show example »
2 A curve has equation \(y = \frac { x ^ { 2 } - 6 x - 5 } { x - 2 }\).
  1. Find the equations of the asymptotes.
  2. Show that \(y\) can take all real values.
View full question →
Easiest question Standard +0.3 »
7 A curve has equation \(y = \frac { 3 + x ^ { 2 } } { 4 - x ^ { 2 } }\).
  1. Show that \(y\) can never be zero.
  2. Write down the equations of the two vertical asymptotes and the one horizontal asymptote.
  3. Describe the behaviour of the curve for large positive and large negative values of \(x\), justifying your description.
  4. Sketch the curve.
  5. Solve the inequality \(\frac { 3 + x ^ { 2 } } { 4 - x ^ { 2 } } \leqslant - 2\).
View full question →
Hardest question Challenging +1.8 »
7. (a) Find the set of values of \(k\) for which the equation $$\frac { x ^ { 2 } + 3 x + 8 } { x ^ { 2 } + x - 2 } = k$$ has no real roots. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0214eebf-93f2-4338-9222-443000115225-5_718_869_511_603} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C _ { 1 }\) with equation \(y = \mathrm { f } ( x )\) where \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 x + 8 } { x ^ { 2 } + x - 2 }\) The curve has asymptotes \(x = a , x = b\) and \(y = c\), where \(a , b\) and \(c\) are integers.
(b) Find the value of \(a\), the value of \(b\) and the value of \(c\).
(c) Find the coordinates of the points of intersection of \(C _ { 1 }\) with the line \(y = 2\) (d) Find all the integer pairs \(( r , s )\) that satisfy \(s = \frac { r ^ { 2 } + 3 r + 8 } { r ^ { 2 } + r - 2 }\) The curve \(C _ { 2 }\) has equation \(y = \mathrm { g } ( x )\) where \(\mathrm { g } ( x ) = \frac { 2 x ^ { 2 } - 4 x + 6 } { x ^ { 2 } - 3 x }\) (e) Show that, for suitable integers \(m\) and \(n , \mathrm {~g} ( x )\) can be written in the form \(\mathrm { f } ( x + m ) + n\).
(f) Sketch \(C _ { 2 }\) showing any asymptotes and stating their equations.
View full question →
Stationary Points of Rational Functions

Questions requiring differentiation of a rational function to find coordinates of stationary points or to determine conditions for their existence.

13 Standard +0.9
7.3% of questions
Show example »
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { k x - 1 }$$ where \(k\) is a positive constant.
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points of \(C\).
  3. Sketch \(C\).
View full question →
Easiest question Standard +0.3 »
4. $$\mathrm { g } ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 48 } { x ^ { 2 } + x - 12 } , \quad x > 3 , \quad x \in \mathbb { R }$$
  1. Given that $$\frac { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 48 } { x ^ { 2 } + x - 12 } \equiv x ^ { 2 } + A + \frac { B } { x - 3 }$$ find the values of the constants \(A\) and \(B\).
  2. Hence, or otherwise, find the equation of the tangent to the curve with equation \(y = \mathrm { g } ( x )\) at the point where \(x = 4\). Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants to be determined.
    (5)
View full question →
Hardest question Challenging +1.2 »
The curve \(C\) has equation $$y = \frac { x ( x + 1 ) } { ( x - 1 ) ^ { 2 } }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that there is exactly one point of intersection of \(C\) with the asymptotes and find its coordinates.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence
    (a) find the coordinates of any stationary points of \(C\),
    (b) state the set of values of \(x\) for which the gradient of \(C\) is negative.
  4. Draw a sketch of \(C\).
View full question →
Sketching Rational Function Curves

Questions requiring a complete sketch of a rational function showing asymptotes, intercepts, and behavior in different regions.

12 Standard +0.5
6.7% of questions
Show example »
4 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 7 x + 6 } { x - 2 }$$
  1. Find the coordinates of the points of intersection of \(C\) with the axes.
  2. Find the equation of each of the asymptotes of \(C\).
  3. Sketch C.
View full question →
Easiest question Standard +0.3 »
8 A curve has equation \(y = \frac { x ^ { 2 } - 4 } { ( x - 3 ) ( x + 1 ) ( x - 1 ) }\).
  1. Write down the coordinates of the points where the curve crosses the axes.
  2. Write down the equations of the three vertical asymptotes and the one horizontal asymptote.
  3. Determine whether the curve approaches the horizontal asymptote from above or below for
    (A) large positive values of \(x\),
    (B) large negative values of \(x\).
  4. Sketch the curve.
View full question →
Hardest question Challenging +1.2 »
9 The function f is defined by $$f ( x ) = \frac { x ( x + 3 ) } { x + 4 } \quad ( x \in \mathbb { R } , x \neq - 4 )$$ 9
  1. Find the interval ( \(a , b\) ) in which \(\mathrm { f } ( x )\) does not take any values.
    Fully justify your answer.
    9
  2. Find the coordinates of the two stationary points of the graph of \(y = \mathrm { f } ( x )\) 9
  3. Show that the graph of \(y = \mathrm { f } ( x )\) has an oblique asymptote and find its equation.
    \section*{Question 9 continues on the next page} 9
  4. Sketch the graph of \(y = \mathrm { f } ( x )\) on the axes below.
    [0pt] [4 marks] \includegraphics[max width=\textwidth, alt={}, center]{44e22a98-6424-4fb1-8a37-c965773cb7b6-16_1100_1100_406_470} \includegraphics[max width=\textwidth, alt={}, center]{44e22a98-6424-4fb1-8a37-c965773cb7b6-17_2493_1732_214_139}
  5. Fird \(\begin{aligned} & \text { Do not write } \\ & \text { outside the } \end{aligned}\)
View full question →
Sketching Polynomial Curves

Questions requiring a sketch of a polynomial curve, typically showing intercepts, turning points, and overall shape based on factorised form.

12 Moderate -0.2
6.7% of questions
Show example »
2 Two curves have equations \(y = \ln x\) and \(y = \frac { k } { x }\), where \(k\) is a positive constant.
  1. Sketch the curves on a single diagram.
  2. Explain how your diagram shows that the equation \(x \ln x - k = 0\) has exactly one real root.
View full question →
Easiest question Moderate -0.3 »
13 A cubic polynomial is given by \(\mathrm { f } ( x ) = 2 x ^ { 3 } - x ^ { 2 } - 11 x - 12\).
  1. Show that \(( x - 3 ) \left( 2 x ^ { 2 } + 5 x + 4 \right) = 2 x ^ { 3 } - x ^ { 2 } - 11 x - 12\). Hence show that \(\mathrm { f } ( x ) = 0\) has exactly one real root.
  2. Show that \(x = 2\) is a root of the equation \(\mathrm { f } ( x ) = - 22\) and find the other roots of this equation.
  3. Using the results from the previous parts, sketch the graph of \(y = \mathrm { f } ( x )\).
View full question →
Hardest question Standard +0.3 »
12 The function \(\mathrm { f } ( x )\) is given by \(\mathrm { f } ( x ) = x ^ { 3 } + 6 x ^ { 2 } + 5 x - 12\).
  1. Show that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Find the other factors of \(\mathrm { f } ( x )\).
  3. State the coordinates where the graph of \(y = \mathrm { f } ( x )\) cuts the \(x\) axis. Hence sketch the graph of \(y = \mathrm { f } ( x )\).
  4. On the same graph sketch also \(y = x ( x - 1 ) ( x - 2 )\) Label the two points of intersection of the two curves A and B .
  5. By equating the two curves, show that the \(x\) coordinates of A and B satisfy the equation \(3 x ^ { 2 } + x - 4 = 0\).
    Solve this equation to find the \(x\)-coordinates of A and B .
View full question →
Finding Constants from Division Conditions

Questions where a polynomial contains unknown constants, and conditions about the quotient, remainder, or integration result are used to determine these constants.

12 Moderate -0.0
6.7% of questions
Show example »
3 When \(x ^ { 4 } - 2 x ^ { 3 } - 7 x ^ { 2 } + 7 x + a\) is divided by \(x ^ { 2 } + 2 x - 1\), the quotient is \(x ^ { 2 } + b x + 2\) and the remainder is \(c x + 7\). Find the values of the constants \(a , b\) and \(c\).
View full question →
Easiest question Moderate -0.8 »
4 The polynomial \(\mathrm { f } ( x )\) is defined by $$f ( x ) = 3 x ^ { 3 } + a x ^ { 2 } + a x + a$$ where \(a\) is a constant.
  1. Given that \(( x + 2 )\) is a factor of \(\mathrm { f } ( x )\), find the value of \(a\).
  2. When \(a\) has the value found in part (i), find the quotient when \(\mathrm { f } ( x )\) is divided by ( \(x + 2\) ).
View full question →
Hardest question Standard +0.3 »
7 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 2 x ^ { 3 } + 5 x ^ { 2 } + a x + 2 a$$ where \(a\) is an integer.
  1. Find, in terms of \(x\) and \(a\), the quotient when \(\mathrm { p } ( x )\) is divided by ( \(x + 2\) ), and show that the remainder is 4 .
  2. It is given that \(\int _ { - 1 } ^ { 1 } \frac { \mathrm { p } ( x ) } { x + 2 } \mathrm {~d} x = \frac { 22 } { 3 } + \ln b\), where \(b\) is an integer. Find the values of \(a\) and \(b\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
View full question →
Polynomial Expansion and Simplification

Questions requiring expansion of products of polynomials (including binomials and trinomials) and simplification of the result.

10 Easy -1.3
5.6% of questions
Show example »
9 Expand and simplify \(( n + 2 ) ^ { 3 } - n ^ { 3 }\).
View full question →
Easiest question Easy -1.8 »
3 Simplify \(\frac { \left( 3 x y ^ { 4 } \right) ^ { 3 } } { 6 x ^ { 5 } y ^ { 2 } }\).
View full question →
Hardest question Moderate -0.8 »
5
  1. Expand and simplify \(( 2 x + 1 ) ( x - 3 ) ( x + 4 )\).
  2. Find the coefficient of \(x ^ { 4 }\) in the expansion of $$x \left( x ^ { 2 } + 2 x + 3 \right) \left( x ^ { 2 } + 7 x - 2 \right) .$$
View full question →
Division to Solve Polynomial Equations

Questions that use polynomial division (often with a known factor or quadratic divisor) to reduce a cubic or quartic equation, then solve the resulting equation exactly.

10 Standard +0.0
5.6% of questions
Show example »
5
  1. Simplify \(\frac { x ^ { 3 } - x ^ { 2 } - 3 x - 9 } { x - 3 }\).
  2. Hence or otherwise solve the equation \(x ^ { 3 } - x ^ { 2 } - 3 x - 9 = 6 ( x - 3 )\).
View full question →
Easiest question Moderate -0.8 »
2
  1. Find the quotient when \(4 x ^ { 3 } + 17 x ^ { 2 } + 9 x\) is divided by \(x ^ { 2 } + 5 x + 6\), and show that the remainder is 18 .
  2. Hence solve the equation \(4 x ^ { 3 } + 17 x ^ { 2 } + 9 x - 18 = 0\).
View full question →
Hardest question Standard +0.3 »
3
  1. Find the quotient when \(6 x ^ { 4 } - x ^ { 3 } - 26 x ^ { 2 } + 4 x + 15\) is divided by ( \(x ^ { 2 } - 4\) ), and confirm that the remainder is 7 .
  2. Hence solve the equation \(6 x ^ { 4 } - x ^ { 3 } - 26 x ^ { 2 } + 4 x + 8 = 0\).
View full question →
Solving Inequalities with Rational Functions

Questions that ask to solve inequalities involving rational expressions, typically requiring analysis of sign changes across asymptotes and zeros.

8 Standard +0.7
4.5% of questions
Show example »
8 A curve has equation \(y = \frac { 2 x ^ { 2 } } { ( x - 3 ) ( x + 2 ) }\).
  1. Write down the equations of the three asymptotes.
  2. Determine whether the curve approaches the horizontal asymptote from above or below for
    (A) large positive values of \(x\),
    (B) large negative values of \(x\).
  3. Sketch the curve.
  4. Solve the inequality \(\frac { 2 x ^ { 2 } } { ( x - 3 ) ( x + 2 ) } < 0\).
View full question →
Polynomial Identity Matching

Questions that require finding constants in a polynomial identity by expanding and comparing coefficients on both sides of an equivalence.

8 Moderate -0.7
4.5% of questions
Show example »
3 Find the values of the constants \(A\), \(B\), \(C\) and \(D\) in the identity $$x ^ { 3 } - 4 \equiv ( x - 1 ) \left( A x ^ { 2 } + B x + C \right) + D .$$
View full question →
Integration Using Polynomial Division

Questions that require performing polynomial division first, then integrating the resulting expression (quotient plus remainder term), often giving answers in the form a + ln(b).

8 Standard +0.3
4.5% of questions
Show example »
9
  1. Find the quotient and remainder when \(x ^ { 4 } + 16\) is divided by \(x ^ { 2 } + 4\).
  2. Hence show that \(\int _ { 2 } ^ { 2 \sqrt { 3 } } \frac { x ^ { 4 } + 16 } { x ^ { 2 } + 4 } \mathrm {~d} x = \frac { 4 } { 3 } ( \pi + 4 )\).
View full question →
Partial Fraction Form via Division

Questions asking to express a rational function in the form (polynomial) + (proper fraction), typically by performing polynomial division when the numerator degree equals or exceeds the denominator degree.

6 Moderate -0.3
3.4% of questions
Show example »
3 The expression $$\frac { 12 x ^ { 2 } + 3 x + 7 } { 3 x - 5 }$$ can be written as $$A x + B + \frac { C } { 3 x - 5 }$$ State the value of \(A\) Circle your answer.
[0pt] [1 mark] $$\begin{array} { l l l l } 3 & 4 & 7 & 9 \end{array}$$
View full question →
Differentiation of Simplified Fractions

Questions that ask to simplify a rational expression first (often by combining fractions), then differentiate the result.

6 Standard +0.2
3.4% of questions
Show example »
2. $$f ( x ) = \frac { 2 x + 2 } { x ^ { 2 } - 2 x - 3 } - \frac { x + 1 } { x - 3 }$$
  1. Express \(\mathrm { f } ( x )\) as a single fraction in its simplest form.
  2. Hence show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { ( x - 3 ) ^ { 2 } }\)
View full question →
Combining Algebraic Fractions

Questions that require expressing multiple algebraic fractions as a single fraction in simplest form, typically involving finding common denominators.

5 Moderate -0.7
2.8% of questions
Show example »
  1. Express \(\frac { 4 x } { x ^ { 2 } - 9 } - \frac { 2 } { x + 3 }\) as a single fraction in its simplest form.
View full question →
Complete Factorisation of Polynomials

Questions asking to factorise a polynomial completely into linear and/or irreducible quadratic factors, often using the factor theorem or inspection.

3 Moderate -0.6
1.7% of questions
Show example »
Factorise completely $$x ^ { 3 } - 9 x .$$
View full question →
Solving Equations via Substitution After Division

Questions that use polynomial division or factorisation results to solve equations involving exponential or trigonometric substitutions (e.g., solving for y where x = e^(3y) or x = cosec(2θ)).

2 Standard +0.3
1.1% of questions
Show example »
5
  1. Find the quotient when \(x ^ { 4 } - 32 x + 55\) is divided by \(( x - 2 ) ^ { 2 }\) and show that the remainder is 7 .
  2. Factorise \(x ^ { 4 } - 32 x + 48\).
  3. Hence solve the equation \(\mathrm { e } ^ { - 12 y } - 32 \mathrm { e } ^ { - 3 y } + 48 = 0\), giving your answer in an exact form.
View full question →
Factorisation After Division or Remainder

Questions that ask to factorise a polynomial completely, typically after using division results or adjusting by the remainder (e.g., factorise p(x) - r or p(x) + k).

2 Standard +0.0
1.1% of questions
Show example »
3
  1. Find the quotient when the polynomial $$8 x ^ { 3 } - 4 x ^ { 2 } - 18 x + 13$$ is divided by \(4 x ^ { 2 } + 4 x - 3\), and show that the remainder is 4 .
  2. Hence, or otherwise, factorise the polynomial $$8 x ^ { 3 } - 4 x ^ { 2 } - 18 x + 9$$
View full question →
Finding Polynomial from Division Information

Questions where the quotient and remainder of a division are given, and you must reconstruct the original polynomial using the division algorithm.

1 Moderate -0.8
0.6% of questions
Show example »
1 When the polynomial \(\mathrm { f } ( x )\) is divided by \(x ^ { 2 } + 1\), the quotient is \(x ^ { 2 } + 4 x + 2\) and the remainder is \(x - 1\). Find \(\mathrm { f } ( x )\), simplifying your answer.
View full question →
Rational Function Asymptotes

Questions asking to identify and write down the equations of vertical, horizontal, or oblique asymptotes of a rational function.

0
0.0% of questions
Unclassified

Questions not yet assigned to a type.

6
3.4% of questions
Show 6 unclassified »
The curve \(C\) has equation $$y = \frac { a x ^ { 2 } + b x + c } { x + d }$$ where \(a , b , c\) and \(d\) are constants. The curve cuts the \(y\)-axis at \(( 0 , - 2 )\) and has asymptotes \(x = 2\) and \(y = x + 1\).
  1. Write down the value of \(d\).
  2. Determine the values of \(a , b\) and \(c\).
  3. Show that, at all points on \(C\), either \(y \leqslant 3 - 2 \sqrt { 6 }\) or \(y \geqslant 3 + 2 \sqrt { 6 }\).
9 The curve \(C\) has equation \(y = \frac { x ^ { 2 } - 3 x + 6 } { 1 - x }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of the turning points of \(C\).
  3. Find the coordinates of any intersections with the coordinate axes.
  4. Sketch \(C\).
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + b } { x + b }$$ where \(b\) is a positive constant.
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) does not intersect the \(x\)-axis.
  3. Justifying your answer, find the number of stationary points on \(C\).
  4. Sketch C. Your sketch should indicate the coordinates of any points of intersection with the \(y\)-axis. You do not need to find the coordinates of any stationary points.
4 A curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + x - 1 } { x - 1 }\). Find the equations of the asymptotes of \(C\). Show that there is no point on \(C\) for which \(1 < y < 9\).
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant. Find the set of values of \(k\) for which \(C\) has no stationary points. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
3
  1. Find the quotient when $$x ^ { 4 } - 2 x ^ { 3 } + 8 x ^ { 2 } - 12 x + 13$$ is divided by \(x ^ { 2 } + 6\) and show that the remainder is 1 .
  2. Show that the equation $$x ^ { 4 } - 2 x ^ { 3 } + 8 x ^ { 2 } - 12 x + 12 = 0$$ has no real roots.