4.
$$\mathrm { g } ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 48 } { x ^ { 2 } + x - 12 } , \quad x > 3 , \quad x \in \mathbb { R }$$
- Given that
$$\frac { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 48 } { x ^ { 2 } + x - 12 } \equiv x ^ { 2 } + A + \frac { B } { x - 3 }$$
find the values of the constants \(A\) and \(B\).
- Hence, or otherwise, find the equation of the tangent to the curve with equation \(y = \mathrm { g } ( x )\) at the point where \(x = 4\). Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants to be determined.
(5)