Polynomial Division with Remainder Verification

Questions that ask to find the quotient when dividing a polynomial by a linear or quadratic divisor, and verify or show that the remainder equals a specific value.

19 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2010 June Q4
6 marks Moderate -0.8
4 The polynomial \(x ^ { 3 } + 3 x ^ { 2 } + 4 x + 2\) is denoted by \(\mathrm { f } ( x )\).
  1. Find the quotient and remainder when \(\mathrm { f } ( x )\) is divided by \(x ^ { 2 } + x - 1\).
  2. Use the factor theorem to show that \(( x + 1 )\) is a factor of \(\mathrm { f } ( x )\).
CAIE P3 2013 June Q1
3 marks Easy -1.8
1 Find the quotient and remainder when \(2 x ^ { 2 }\) is divided by \(x + 2\).
CAIE P3 2017 November Q1
3 marks Moderate -0.8
1 Find the quotient and remainder when \(x ^ { 4 }\) is divided by \(x ^ { 2 } + 2 x - 1\).
CAIE P2 2016 March Q1
3 marks Easy -1.2
1 Find the quotient and the remainder when \(2 x ^ { 3 } + 3 x ^ { 2 } + 10\) is divided by \(( x + 2 )\).
CAIE P2 2005 November Q2
6 marks Moderate -0.3
2 The polynomial \(x ^ { 3 } + 2 x ^ { 2 } + 2 x + 3\) is denoted by \(\mathrm { p } ( x )\).
  1. Find the remainder when \(\mathrm { p } ( x )\) is divided by \(x - 1\).
  2. Find the quotient and remainder when \(\mathrm { p } ( x )\) is divided by \(x ^ { 2 } + x - 1\).
CAIE P2 2019 November Q1
3 marks Moderate -0.5
1 The polynomial \(\mathrm { f } ( x )\) is defined by $$f ( x ) = x ^ { 4 } - 3 x ^ { 3 } + 5 x ^ { 2 } - 6 x + 11$$ Find the quotient and remainder when \(\mathrm { f } ( x )\) is divided by \(\left( x ^ { 2 } + 2 \right)\).
CAIE P3 2020 June Q1
3 marks Moderate -0.5
1 Find the quotient and remainder when \(6 x ^ { 4 } + x ^ { 3 } - x ^ { 2 } + 5 x - 6\) is divided by \(2 x ^ { 2 } - x + 1\).
CAIE P3 2023 June Q2
3 marks Moderate -0.5
2 Find the quotient and remainder when \(2 x ^ { 4 } - 27\) is divided by \(x ^ { 2 } + x + 3\).
CAIE P3 2024 March Q1
3 marks Moderate -0.5
1 Find the quotient and remainder when \(x ^ { 4 } - 3 x ^ { 3 } + 9 x ^ { 2 } - 12 x + 27\) is divided by \(x ^ { 2 } + 5\).
CAIE P3 2021 November Q1
3 marks Moderate -0.5
1 Find the quotient and remainder when \(2 x ^ { 4 } + 1\) is divided by \(x ^ { 2 } - x + 2\).
OCR C4 2005 June Q1
4 marks Moderate -0.3
1 Find the quotient and the remainder when \(x ^ { 4 } + 3 x ^ { 3 } + 5 x ^ { 2 } + 4 x - 1\) is divided by \(x ^ { 2 } + x + 1\).
OCR C4 2008 June Q1
6 marks Moderate -0.3
1
  1. Simplify \(\frac { \left( 2 x ^ { 2 } - 7 x - 4 \right) ( x + 1 ) } { \left( 3 x ^ { 2 } + x - 2 \right) ( x - 4 ) }\).
  2. Find the quotient and remainder when \(x ^ { 3 } + 2 x ^ { 2 } - 6 x - 5\) is divided by \(x ^ { 2 } + 4 x + 1\).
OCR C4 Specimen Q1
4 marks Moderate -0.8
1 Find the quotient and remainder when \(x ^ { 4 } + 1\) is divided by \(x ^ { 2 } + 1\).
OCR C4 Q2
6 marks Moderate -0.3
  1. (i) Simplify
$$\frac { 2 x ^ { 2 } + 3 x - 9 } { 2 x ^ { 2 } - 7 x + 6 }$$ (ii) Find the quotient and remainder when ( \(2 x ^ { 4 } - 1\) ) is divided by ( \(x ^ { 2 } - 2\) ).
OCR C4 2010 January Q1
4 marks Moderate -0.3
1 Find the quotient and the remainder when \(x ^ { 4 } + 11 x ^ { 3 } + 28 x ^ { 2 } + 3 x + 1\) is divided by \(x ^ { 2 } + 5 x + 2\).
OCR C4 2009 June Q1
4 marks Moderate -0.3
1 Find the quotient and the remainder when \(3 x ^ { 4 } - x ^ { 3 } - 3 x ^ { 2 } - 14 x - 8\) is divided by \(x ^ { 2 } + x + 2\).
OCR C4 2016 June Q1
3 marks Moderate -0.5
1 Find the quotient and the remainder when \(4 x ^ { 3 } + 8 x ^ { 2 } - 5 x + 12\) is divided by \(2 x ^ { 2 } + 1\).
AQA C4 2005 June Q3
6 marks Moderate -0.8
3
  1. Find the remainder when \(2 x ^ { 3 } - x ^ { 2 } + 2 x - 2\) is divided by \(2 x - 1\).
  2. Given that \(\frac { 2 x ^ { 3 } - x ^ { 2 } + 2 x - 2 } { 2 x - 1 } = x ^ { 2 } + a + \frac { b } { 2 x - 1 }\), find the values of \(a\) and \(b\).
AQA C4 2009 June Q1
5 marks Moderate -0.8
1
  1. Use the Remainder Theorem to find the remainder when \(3 x ^ { 3 } + 8 x ^ { 2 } - 3 x - 5\) is divided by \(3 x - 1\).
  2. Express \(\frac { 3 x ^ { 3 } + 8 x ^ { 2 } - 3 x - 5 } { 3 x - 1 }\) in the form \(a x ^ { 2 } + b x + \frac { c } { 3 x - 1 }\), where \(a , b\) and \(c\) are integers.