Partial Fraction Form via Division

Questions asking to express a rational function in the form (polynomial) + (proper fraction), typically by performing polynomial division when the numerator degree equals or exceeds the denominator degree.

6 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
Edexcel C3 2008 January Q1
4 marks Moderate -0.3
  1. Given that
$$\frac { 2 x ^ { 4 } - 3 x ^ { 2 } + x + 1 } { \left( x ^ { 2 } - 1 \right) } \equiv \left( a x ^ { 2 } + b x + c \right) + \frac { d x + e } { \left( x ^ { 2 } - 1 \right) }$$ find the values of the constants \(a , b , c , d\) and \(e\).
(4)
Edexcel C3 2013 June Q1
4 marks Moderate -0.5
  1. Given that
$$\frac { 3 x ^ { 4 } - 2 x ^ { 3 } - 5 x ^ { 2 } - 4 } { x ^ { 2 } - 4 } \equiv a x ^ { 2 } + b x + c + \frac { d x + e } { x ^ { 2 } - 4 } , \quad x \neq \pm 2$$ find the values of the constants \(a , b , c , d\) and \(e\).
(4)
OCR C4 Q1
4 marks Moderate -0.3
  1. \(\mathrm { f } ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 13 x ^ { 2 } + 26 x - 17 } { x ^ { 2 } - 3 x + 3 }\).
Find the values of the constants \(A , B , C\) and \(D\) such that $$f ( x ) = x ^ { 2 } + A x + B + \frac { C x + D } { x ^ { 2 } - 3 x + 3 }$$
Edexcel C3 Q8
13 marks Standard +0.3
  1. \(f ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 5 x ^ { 2 } - 9 } { x ^ { 2 } + x - 6 }\).
    1. Using algebraic division, show that
    $$f ( x ) = x ^ { 2 } + A + \frac { B } { x + C }$$ where \(A , B\) and \(C\) are integers to be found.
  2. By sketching two suitable graphs on the same set of axes, show that the equation \(\mathrm { f } ( x ) = 0\) has exactly one real root.
  3. Use the iterative formula $$x _ { n + 1 } = 2 + \frac { 1 } { x _ { n } ^ { 2 } + 1 } ,$$ with a suitable starting value to find the root of the equation \(\mathrm { f } ( x ) = 0\) correct to 3 significant figures and justify the accuracy of your answer.
Edexcel C3 Q3
10 marks Standard +0.3
  1. \(f ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 13 x ^ { 2 } + 26 x - 17 } { x ^ { 2 } - 3 x + 3 } , x \in \mathbb { R }\).
    1. Find the values of the constants \(A\), \(B\), \(C\) and \(D\) such that
    $$f ( x ) = x ^ { 2 } + A x + B + \frac { C x + D } { x ^ { 2 } - 3 x + 3 }$$ The point \(P\) on the curve \(y = \mathrm { f } ( x )\) has \(x\)-coordinate 1.
  2. Show that the normal to the curve \(y = \mathrm { f } ( x )\) at \(P\) has the equation $$x + 5 y + 9 = 0$$
AQA Paper 1 2024 June Q3
1 marks Easy -1.2
3 The expression $$\frac { 12 x ^ { 2 } + 3 x + 7 } { 3 x - 5 }$$ can be written as $$A x + B + \frac { C } { 3 x - 5 }$$ State the value of \(A\) Circle your answer.
[0pt] [1 mark] $$\begin{array} { l l l l } 3 & 4 & 7 & 9 \end{array}$$