OCR MEI Further Mechanics Major 2021 November — Question 12

Exam BoardOCR MEI
ModuleFurther Mechanics Major (Further Mechanics Major)
Year2021
SessionNovember
TopicSimple Harmonic Motion

12 A particle P of mass \(m\) is fixed to one end of a light elastic string of natural length \(l\) and modulus of elasticity 12 mg . The other end of the string is attached to a fixed point O . Particle P is held next to O and then released from rest.
  1. Show that P next comes instantaneously to rest when the length of the string is \(\frac { 3 } { 2 } l\). The string first becomes taut at time \(t = 0\). At time \(t \geqslant 0\), the length of the string is \(l + x\), where \(x\) is the extension in the string.
  2. Show that when the string is taut, \(x\) satisfies the differential equation $$\ddot { \mathrm { x } } + \omega ^ { 2 } \mathrm { x } = \mathrm { g } \text {, where } \omega ^ { 2 } = \frac { 12 \mathrm {~g} } { \mathrm { I } } \text {. }$$
  3. By using the substitution \(x = y + \frac { g } { \omega ^ { 2 } }\), solve the differential equation to show that the time when the string first becomes slack satisfies the equation $$\cos \omega \mathrm { t } - \sqrt { \mathrm { k } } \sin \omega \mathrm { t } = 1$$ where \(k\) is an integer to be determined.