9 A small ball P is projected with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation of \(( \alpha + \theta )\) from a point O at the bottom of a plane inclined at \(\alpha\) to the horizontal. P subsequently hits the plane at a point R , where OR is a line of greatest slope, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-07_456_862_406_242}
- By deriving an expression, in terms of \(\theta\), \(\alpha\) and \(g\), for the time of flight of P , show that the distance OR, in metres, is
$$\frac { 50 \sin \theta \cos ( \theta + \alpha ) } { g \cos ^ { 2 } \alpha }$$
- By using the identity \(2 \sin \mathrm {~A} \cos \mathrm {~B} \equiv \sin ( \mathrm {~A} + \mathrm { B } ) - \sin ( \mathrm { B } - \mathrm { A } )\), determine, in terms of \(g\) and \(\sin \alpha\), an expression for the maximum range of P up the plane, as \(\theta\) varies.
- Given that OR is the maximum range of P up the plane and is equal to 1.8 m , determine the value of \(\theta\).
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-08_625_1180_255_239}
A rigid wire ABC is fixed in a vertical plane. The section AB of the wire, of length \(b\), is straight and horizontal. The section BC of the wire is smooth and in the form of a circular arc of radius \(a\) and length \(\frac { 1 } { 2 } a \pi\). The centre of the arc is O , which is vertically above B .
A bead P of mass \(m\) is threaded on the wire and projected from B with speed \(u\) towards C . The angle BOP when P is between B and C is denoted by \(\theta\), as shown in the diagram.