OCR MEI Further Mechanics Major (Further Mechanics Major) 2021 November

Question 1
View details
1 A small ball of mass 0.25 kg is held above a horizontal floor. The ball is released from rest and hits the floor with a speed of \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It rebounds from the floor with a speed of \(4.2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The situation is modelled by assuming that the ball is in contact with the floor for 0.02 s and during this time the normal contact force the floor exerts on the ball is constant. Determine the magnitude of the normal contact force that the floor exerts on the ball.
Question 2
View details
2 The diagram shows a system of three particles of masses \(3 m , 5 m\) and \(2 m\) situated in the \(x - y\) plane at the points \(\mathrm { A } ( 1,2 ) , \mathrm { B } ( 2 , - 2 )\) and \(\mathrm { C } ( 5,3 )\) respectively.
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-02_789_744_1085_239} Determine the coordinates of the centre of mass of the system of particles.
Question 3
View details
3 One end of a light elastic spring of natural length 0.3 m is attached to a fixed point. A mass of 4 kg is attached to the other end of the spring. When the spring hangs vertically in equilibrium the extension of the spring is 0.02 m .
  1. Determine the modulus of elasticity of the spring. A student calculates that if the mass of 4 kg is removed and replaced with a mass of 20 kg the extension of the spring will be 0.1 m .
  2. Suggest a reason why this extension may not be 0.1 m .
Question 4
View details
4 In this question you must show detailed reasoning.
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-03_646_812_312_242} The diagram shows parts of the curves \(y = 3 \sqrt { x }\) and \(y = 4 - x ^ { 2 }\), which intersect at the point ( 1,3 ). The shaded region, bounded by the two curves and the \(y\)-axis, is occupied by a uniform lamina. Determine the exact \(x\)-coordinate of the centre of mass of the lamina.
Question 5
View details
5 Two small uniform smooth spheres A and B , of equal radius, have masses 2 kg and 4 kg respectively. They are moving on a horizontal surface when they collide. Immediately before the collision, A has speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is moving along the line of centres, and B has speed \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is moving along a line which is perpendicular to the line of centres (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-03_389_764_1592_244} The direction of motion of B after the collision makes an angle of \(45 ^ { \circ }\) with the line of centres. Determine the coefficient of restitution between A and B .
Question 6
View details
6
  1. Write down the dimensions of force. The force \(F\) of gravitational attraction between two objects with masses \(m _ { 1 }\) and \(m _ { 2 }\), at a distance \(d\) apart, is given by $$F = \frac { G m _ { 1 } m _ { 2 } } { d ^ { 2 } }$$ where \(G\) is the universal gravitational constant.
    In SI units the value of \(G\) is \(6.67 \times 10 ^ { - 11 } \mathrm {~kg} ^ { - 1 } \mathrm {~m} ^ { 3 } \mathrm {~s} ^ { - 2 }\).
  2. Write down the dimensions of \(G\).
  3. Determine the value of \(G\) in imperial units based on pounds, feet, and seconds. Use the facts that 1 pound \(= 0.454 \mathrm {~kg}\) and 1 foot \(= 0.305 \mathrm {~m}\). For a planet of mass \(M\) and radius \(r\), it is suggested that the velocity \(v\) needed for an object to escape the gravitational pull of the planet, the 'escape velocity', is given by the following formula.
    \(\mathrm { v } = \sqrt { \frac { \mathrm { kGM } } { \mathrm { r } } }\),
    where \(k\) is a dimensionless constant.
  4. Show that this formula is dimensionally consistent. Information regarding the planets Earth and Mars can be found in the table below.
    EarthMars
    Radius (m)63710003389500
    Mass (kg)\(5.97 \times 10 ^ { 24 }\)\(6.39 \times 10 ^ { 23 }\)
    Escape velocity ( \(\mathrm { m } \mathrm { s } ^ { - 1 }\) )11186
  5. Using the formula \(\mathrm { v } = \sqrt { \frac { \mathrm { kGM } } { \mathrm { r } } }\), determine the escape velocity for planet Mars.
Question 7
View details
7 A box B of mass \(m \mathrm {~kg}\) is raised vertically by an engine working at a constant rate of \(k m g \mathrm {~W}\). Initially B is at rest. The speed of B when it has been raised a distance \(x \mathrm {~m}\) is denoted by \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that \(v ^ { 2 } \frac { d v } { d x } = ( k - v ) g\).
  2. Verify that \(\mathrm { gx } = \mathrm { k } ^ { 2 } \ln \left( \frac { \mathrm { k } } { \mathrm { k } - \mathrm { v } } \right) - \mathrm { kv } - \frac { 1 } { 2 } \mathrm { v } ^ { 2 }\).
  3. By using the work-energy principle, show that the time taken for B to reach a speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from rest is given by
    \(\frac { \mathrm { k } } { \mathrm { g } } \ln \left( \frac { \mathrm { k } } { \mathrm { k } - \mathrm { V } } \right) - \frac { \mathrm { V } } { \mathrm { g } }\).
Question 8
View details
8 A capsule consists of a uniform hollow right circular cylinder of radius \(r\) and length \(2 h\) attached to two uniform hollow hemispheres of radius \(r\).
The centres of the plane faces of the hemispheres coincide with the centres, A and B , of the ends of the cylinder. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{17e92314-d7df-49b8-a441-8d18c91dbbb0-06_702_684_445_244} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Fig. 8 represents a vertical cross-section through a plane of symmetry of the capsule as it rests in limiting equilibrium with a point C of one hemisphere on a rough horizontal floor and a point D of the other hemisphere against a rough vertical wall. The total weight of the capsule is \(W\) and acts at a point midway between A and B . The plane containing \(\mathrm { A } , \mathrm { B } , \mathrm { C }\) and D is vertical, with AB making an acute angle \(\theta\) with the downward vertical.
  1. Complete the copy of Fig. 8 in the Printed Answer Booklet to show all the remaining forces acting on the capsule. The coefficient of friction at each point of contact is \(\frac { 1 } { 3 }\).
  2. By resolving vertically and horizontally, determine the magnitude of the normal contact force between the floor and the capsule in terms of \(W\).
  3. By determining an expression for \(r\) in terms of \(h\) and \(\theta\), show that \(\tan \theta > \frac { 3 } { 4 }\).
Question 9
View details
9 A small ball P is projected with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation of \(( \alpha + \theta )\) from a point O at the bottom of a plane inclined at \(\alpha\) to the horizontal. P subsequently hits the plane at a point R , where OR is a line of greatest slope, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-07_456_862_406_242}
  1. By deriving an expression, in terms of \(\theta\), \(\alpha\) and \(g\), for the time of flight of P , show that the distance OR, in metres, is $$\frac { 50 \sin \theta \cos ( \theta + \alpha ) } { g \cos ^ { 2 } \alpha }$$
  2. By using the identity \(2 \sin \mathrm {~A} \cos \mathrm {~B} \equiv \sin ( \mathrm {~A} + \mathrm { B } ) - \sin ( \mathrm { B } - \mathrm { A } )\), determine, in terms of \(g\) and \(\sin \alpha\), an expression for the maximum range of P up the plane, as \(\theta\) varies.
  3. Given that OR is the maximum range of P up the plane and is equal to 1.8 m , determine the value of \(\theta\).
    \includegraphics[max width=\textwidth, alt={}, center]{17e92314-d7df-49b8-a441-8d18c91dbbb0-08_625_1180_255_239} A rigid wire ABC is fixed in a vertical plane. The section AB of the wire, of length \(b\), is straight and horizontal. The section BC of the wire is smooth and in the form of a circular arc of radius \(a\) and length \(\frac { 1 } { 2 } a \pi\). The centre of the arc is O , which is vertically above B . A bead P of mass \(m\) is threaded on the wire and projected from B with speed \(u\) towards C . The angle BOP when P is between B and C is denoted by \(\theta\), as shown in the diagram.
Question 10
View details
  1. Determine the magnitude of the normal reaction of the wire on P in terms of \(m , g , a , u\) and \(\theta\), when P is between B and C . P collides with a fixed barrier at C . The coefficient of restitution between P and the fixed barrier is \(e\). After this collision P moves back towards B . On the straight portion BA , the motion of P is resisted by a constant horizontal force \(F\).
  2. Show that P will reach A if $$F b \leqslant \frac { 1 } { 2 } m \left[ e ^ { 2 } u ^ { 2 } + k \left( 1 - e ^ { 2 } \right) g a \right] ,$$ where \(k\) is an integer to be determined.
Question 11
View details
11 Two small uniform smooth spheres A and B , of equal radius, have masses 4 kg and 3 kg respectively. The spheres are placed in a smooth horizontal circular groove. The coefficient of restitution between the spheres is \(e\), where \(e > \frac { 2 } { 5 }\). At a given instant B is at rest and A is set moving along the groove with speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It may be assumed that in the subsequent motion the two spheres do not leave the groove.
  1. Determine, in terms of \(e\) and \(V\), the speeds of A and B immediately after the first collision.
  2. Show that the arc through which A moves between the first and second collisions subtends an angle at the centre of the circular groove of $$\frac { 2 \pi ( 4 - 3 e ) } { 7 e } \text { radians. }$$
    1. Determine, in terms of \(e\) and \(V\), the speed of B immediately after the second collision.
    2. What can be said about the motion of A and B if the collisions between A and B are perfectly elastic?
Question 12
View details
12 A particle P of mass \(m\) is fixed to one end of a light elastic string of natural length \(l\) and modulus of elasticity 12 mg . The other end of the string is attached to a fixed point O . Particle P is held next to O and then released from rest.
  1. Show that P next comes instantaneously to rest when the length of the string is \(\frac { 3 } { 2 } l\). The string first becomes taut at time \(t = 0\). At time \(t \geqslant 0\), the length of the string is \(l + x\), where \(x\) is the extension in the string.
  2. Show that when the string is taut, \(x\) satisfies the differential equation $$\ddot { \mathrm { x } } + \omega ^ { 2 } \mathrm { x } = \mathrm { g } \text {, where } \omega ^ { 2 } = \frac { 12 \mathrm {~g} } { \mathrm { I } } \text {. }$$
  3. By using the substitution \(x = y + \frac { g } { \omega ^ { 2 } }\), solve the differential equation to show that the time when the string first becomes slack satisfies the equation $$\cos \omega \mathrm { t } - \sqrt { \mathrm { k } } \sin \omega \mathrm { t } = 1$$ where \(k\) is an integer to be determined.