OCR MEI Further Mechanics Major 2021 November — Question 6

Exam BoardOCR MEI
ModuleFurther Mechanics Major (Further Mechanics Major)
Year2021
SessionNovember
TopicDimensional Analysis

6
  1. Write down the dimensions of force. The force \(F\) of gravitational attraction between two objects with masses \(m _ { 1 }\) and \(m _ { 2 }\), at a distance \(d\) apart, is given by $$F = \frac { G m _ { 1 } m _ { 2 } } { d ^ { 2 } }$$ where \(G\) is the universal gravitational constant.
    In SI units the value of \(G\) is \(6.67 \times 10 ^ { - 11 } \mathrm {~kg} ^ { - 1 } \mathrm {~m} ^ { 3 } \mathrm {~s} ^ { - 2 }\).
  2. Write down the dimensions of \(G\).
  3. Determine the value of \(G\) in imperial units based on pounds, feet, and seconds. Use the facts that 1 pound \(= 0.454 \mathrm {~kg}\) and 1 foot \(= 0.305 \mathrm {~m}\). For a planet of mass \(M\) and radius \(r\), it is suggested that the velocity \(v\) needed for an object to escape the gravitational pull of the planet, the 'escape velocity', is given by the following formula.
    \(\mathrm { v } = \sqrt { \frac { \mathrm { kGM } } { \mathrm { r } } }\),
    where \(k\) is a dimensionless constant.
  4. Show that this formula is dimensionally consistent. Information regarding the planets Earth and Mars can be found in the table below.
    EarthMars
    Radius (m)63710003389500
    Mass (kg)\(5.97 \times 10 ^ { 24 }\)\(6.39 \times 10 ^ { 23 }\)
    Escape velocity ( \(\mathrm { m } \mathrm { s } ^ { - 1 }\) )11186
  5. Using the formula \(\mathrm { v } = \sqrt { \frac { \mathrm { kGM } } { \mathrm { r } } }\), determine the escape velocity for planet Mars.