CAIE FP1 (Further Pure Mathematics 1) 2007 November

Question 1
View details
1 A curve is defined parametrically by $$x = a t ^ { 2 } , \quad y = a t$$ where \(a\) is a positive constant. The part of the curve joining the point where \(t = 0\) to the point where \(t = \sqrt { } 2\) is rotated through one complete revolution about the \(x\)-axis. Show that the area of the surface obtained is \(\frac { 13 } { 3 } \pi a ^ { 2 }\).
Question 2
View details
2 Express $$\frac { 2 n + 3 } { n ( n + 1 ) }$$ in partial fractions and hence use the method of differences to find $$\sum _ { n = 1 } ^ { N } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$ in terms of \(N\). Deduce the value of $$\sum _ { n = 1 } ^ { \infty } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$
Question 3
View details
3 Prove by induction that, for all \(n \geqslant 1\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x ^ { 2 } } \right) = \mathrm { P } _ { n } ( x ) \mathrm { e } ^ { x ^ { 2 } } ,$$ where \(\mathrm { P } _ { n } ( x )\) is a polynomial in \(x\) of degree \(n\) with the coefficient of \(x ^ { n }\) equal to \(2 ^ { n }\).
Question 4
View details
4 The roots of the equation $$x ^ { 3 } - 8 x ^ { 2 } + 5 = 0$$ are \(\alpha , \beta , \gamma\). Show that $$\alpha ^ { 2 } = \frac { 5 } { \beta + \gamma } .$$ It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative and the other two roots are positive.
Question 5
View details
5 The positive variables \(x\) and \(y\) are related by $$y = x ^ { 2 } + 2 \ln ( x y )$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when both \(x\) and \(y\) are equal to 1 .
Question 6
View details
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } , 3 \mathbf { j }\) and \(4 \mathbf { k }\) respectively. Find a vector which is perpendicular to the plane \(\Pi _ { 1 }\) containing \(A , B\) and \(C\). The plane \(\Pi _ { 2 }\) has equation $$\mathbf { r } = \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } ) + \mu ( \mathbf { j } - \mathbf { k } ) .$$ Find the acute angle between the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 7
View details
7 The curve \(C\) has polar equation $$r = \theta \sin \theta ,$$ where \(0 \leqslant \theta \leqslant \pi\). Draw a sketch of \(C\). Find the area of the region enclosed by \(C\), leaving your answer in terms of \(\pi\).
Question 8
View details
8 Let \(I _ { n } = \int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n } \mathrm {~d} x\).
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right) \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n - 1 } \right] = n \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n } - 4 ( n - 1 ) \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n - 2 } .$$
  2. Hence show that $$n I _ { n } = 4 ( n - 1 ) I _ { n - 2 } + \frac { 3 } { 2 } \left( \frac { 5 } { 2 } \right) ^ { n - 1 } .$$
  3. Use the result in part (ii) to find the \(y\)-coordinate of the centroid of the region bounded by the axes, the line \(x = \ln 2\) and the curve $$y = \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 } .$$ Give your answer correct to 3 decimal places.
Question 9
View details
9 Write down, in any form, all the roots of the equation \(z ^ { 5 } - 1 = 0\). Hence find all the roots of the equation $$( w - 1 ) ^ { 4 } + ( w - 1 ) ^ { 3 } + ( w - 1 ) ^ { 2 } + w = 0$$ and deduce that none of them is real. Find the arguments of the two roots which have the smaller modulus.
Question 10
View details
10 The vectors \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 } , \mathbf { b } _ { 4 }\) are defined as follows: $$\mathbf { b } _ { 1 } = \left( \begin{array} { c } 1
0
0
0 \end{array} \right) , \quad \mathbf { b } _ { 2 } = \left( \begin{array} { c } 1
1
0
0 \end{array} \right) , \quad \mathbf { b } _ { 3 } = \left( \begin{array} { c } 1
1
1
0 \end{array} \right) , \quad \mathbf { b } _ { 4 } = \left( \begin{array} { c } 1
1
1
1 \end{array} \right) .$$ The linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 }\) is denoted by \(V _ { 1 }\) and the linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 4 }\) is denoted by \(V _ { 2 }\).
  1. Give a reason why \(V _ { 1 } \cup V _ { 2 }\) is not a linear space.
  2. State the dimension of the linear space \(V _ { 1 } \cap V _ { 2 }\) and write down a basis. Consider now the set \(V _ { 3 }\) of all vectors of the form \(q \mathbf { b } _ { 2 } + r \mathbf { b } _ { 3 } + s \mathbf { b } _ { 4 }\), where \(q , r , s\) are real numbers. Show that \(V _ { 3 }\) is a linear space, and show also that it has dimension 3 . Determine whether each of the vectors $$\left( \begin{array} { l } 4
    4
    2
    5 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { l } 5
    4
    2
    5 \end{array} \right)$$ belongs to \(V _ { 3 }\) and justify your conclusions.
Question 11
View details
11 Find the eigenvalues of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 1 & 4
1 & 1 & - 1
2 & 1 & 1 \end{array} \right)$$ and corresponding eigenvectors. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \mathbf { A } - k \mathbf { I } ,$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(k\) is a real number. Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { B } ^ { 3 } = \mathbf { P D } \mathbf { P } ^ { - 1 } .$$
Question 12 EITHER
View details
The curve \(C\) has equation $$y = \frac { a x ^ { 2 } + b x + c } { x + 4 }$$ where \(a\), \(b\) and \(c\) are constants. It is given that \(y = 2 x - 5\) is an asymptote of \(C\).
  1. Find the values of \(a\) and \(b\).
  2. Given also that \(C\) has a turning point at \(x = - 1\), find the value of \(c\).
  3. Find the set of values of \(y\) for which there are no points on \(C\).
  4. Draw a sketch of the curve with equation $$y = \frac { 2 ( x - 7 ) ^ { 2 } + 3 ( x - 7 ) - 2 } { x - 3 }$$ [You should state the equations of the asymptotes and the coordinates of the turning points.]
Question 12 OR
View details
Show that the substitution \(y = \frac { 1 } { w }\) reduces the differential equation $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 2 } = \left( 5 x ^ { 2 } + 4 x + 2 \right) y ^ { 3 }$$ to $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + 5 w = - 5 x ^ { 2 } - 4 x - 2$$ Find the general solution for \(w\) in terms of \(x\). Find a function f such that \(\lim _ { x \rightarrow \infty } \left( \frac { y } { \mathrm { f } ( x ) } \right) = 1\).