CAIE FP1 (Further Pure Mathematics 1) 2018 June

Question 1
View details
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 0\) and $$\left( x + \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = y ^ { 2 } + x$$
  1. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = 0\).
  2. Find also the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\).
Question 2
View details
2
  1. Verify that $$\frac { n ( \mathrm { e } - 1 ) + \mathrm { e } } { n ( n + 1 ) \mathrm { e } ^ { n + 1 } } = \frac { 1 } { n \mathrm { e } ^ { n } } - \frac { 1 } { ( n + 1 ) \mathrm { e } ^ { n + 1 } }$$ Let \(S _ { N } = \sum _ { n = 1 } ^ { N } \frac { n ( \mathrm { e } - 1 ) + \mathrm { e } } { n ( n + 1 ) \mathrm { e } ^ { n + 1 } }\).
  2. Express \(S _ { N }\) in terms of \(N\) and e.
    Let \(S = \lim _ { N \rightarrow \infty } S _ { N }\).
  3. Find the least value of \(N\) such that \(( N + 1 ) \left( S - S _ { N } \right) < 10 ^ { - 3 }\).
Question 3
View details
3
  1. Use de Moivre's theorem to show that $$\cos 4 \theta = \cos ^ { 4 } \theta - 6 \cos ^ { 2 } \theta \sin ^ { 2 } \theta + \sin ^ { 4 } \theta$$
  2. Hence find all the roots of the equation $$x ^ { 4 } - 6 x ^ { 2 } + 1 = 0$$ in the form \(\tan q \pi\), where \(q\) is a positive rational number.
Question 4
View details
4 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 7 x + 6 } { x - 2 }$$
  1. Find the coordinates of the points of intersection of \(C\) with the axes.
  2. Find the equation of each of the asymptotes of \(C\).
  3. Sketch C.
Question 5
View details
5 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\) with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 3 }\) and state the corresponding eigenvalue.
    It is given that $$\mathbf { A } = \left( \begin{array} { r r } 2 & 0
    - 1 & 3 \end{array} \right) .$$
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { 3 } + \mathbf { I } = \mathbf { P } \mathbf { D } \mathbf { P } ^ { - 1 }$$ where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
Question 6
View details
6 The equation $$9 x ^ { 3 } - 9 x ^ { 2 } + x - 2 = 0$$ has roots \(\alpha , \beta , \gamma\).
  1. Use the substitution \(y = 3 x - 1\) to show that \(3 \alpha - 1,3 \beta - 1,3 \gamma - 1\) are the roots of the equation $$y ^ { 3 } - 2 y - 7 = 0$$ The sum \(( 3 \alpha - 1 ) ^ { n } + ( 3 \beta - 1 ) ^ { n } + ( 3 \gamma - 1 ) ^ { n }\) is denoted by \(S _ { n }\).
  2. Find the value of \(S _ { 3 }\).
  3. Find the value of \(S _ { - 2 }\).
Question 7
View details
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = a \mathbf { i } + 9 \mathbf { j } + 13 \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 3 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } )$$ respectively. It is given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  1. Find the value of the constant \(a\).
    The point \(P\) has position vector \(3 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }\).
  2. Find the perpendicular distance from \(P\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 2 }\).
Question 8
View details
8 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations, for \(0 \leqslant \theta \leqslant \pi\), as follows: $$\begin{aligned} & C _ { 1 } : r = a
& C _ { 2 } : r = 2 a | \cos \theta | \end{aligned}$$ where \(a\) is a positive constant. The curves intersect at the points \(P _ { 1 }\) and \(P _ { 2 }\).
  1. Find the polar coordinates of \(P _ { 1 }\) and \(P _ { 2 }\).
  2. In a single diagram, sketch \(C _ { 1 } , C _ { 2 }\) and their line of symmetry.
  3. The region \(R\) enclosed by \(C _ { 1 }\) and \(C _ { 2 }\) is bounded by the \(\operatorname { arcs } O P _ { 1 } , P _ { 1 } P _ { 2 }\) and \(P _ { 2 } O\), where \(O\) is the pole. Find the area of \(R\), giving your answer in exact form.
Question 9
View details
9 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 8\) and $$u _ { r + 1 } = \frac { 5 u _ { r } - 3 } { 4 }$$ for all \(r\).
  1. Prove by mathematical induction that $$u _ { n } = 4 \left( \frac { 5 } { 4 } \right) ^ { n } + 3$$ for all positive integers \(n\).
  2. Deduce the set of values of \(x\) for which the infinite series $$\left( u _ { 1 } - 3 \right) x + \left( u _ { 2 } - 3 \right) x ^ { 2 } + \ldots + \left( u _ { r } - 3 \right) x ^ { r } + \ldots$$ is convergent.
  3. Use the result given in part (i) to find surds \(a\) and \(b\) such that $$\sum _ { n = 1 } ^ { N } \ln \left( u _ { n } - 3 \right) = N ^ { 2 } \ln a + N \ln b .$$
Question 10
View details
10 It is given that \(t \neq 0\) and $$t \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 t x = 3 t ^ { 2 } + 1$$
  1. Show that if \(y = t x\) then $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 9 y = 3 t ^ { 2 } + 1$$
  2. Find \(x\) in terms of \(t\), given that \(x = \frac { 1 } { 9 } \pi\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 2 } { 3 }\) when \(t = \frac { 1 } { 3 } \pi\).
Question 11 EITHER
View details
  1. Show that $$\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { x } \cos x \mathrm {~d} x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \frac { 1 } { 2 } \pi } + \mathrm { e } ^ { - \frac { 1 } { 2 } \pi } \right)$$
  2. It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos ^ { n } x \mathrm {~d} x$$ Show that, for \(n \geqslant 2\), $$4 I _ { n } = n ( n - 1 ) \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin ^ { 2 } x \cos ^ { n - 2 } x \mathrm {~d} x - n I _ { n }$$ and deduce the reduction formula $$\left( n ^ { 2 } + 4 \right) I _ { n } = n ( n - 1 ) I _ { n - 2 }$$
  3. Using the result in part (i) and the reduction formula in part (ii), find the \(y\)-coordinate of the centroid of the region bounded by the \(x\)-axis and the arc of the curve \(y = \mathrm { e } ^ { x } \cos x\) from \(x = - \frac { 1 } { 2 } \pi\) to \(x = \frac { 1 } { 2 } \pi\). Give your answer correct to 3 significant figures.
Question 11 OR
View details
Let \(V\) be the subspace of \(\mathbb { R } ^ { 4 }\) spanned by $$\mathbf { v } _ { 1 } = \left( \begin{array} { l } 1
2
0
2 \end{array} \right) , \quad \mathbf { v } _ { 2 } = \left( \begin{array} { r } - 2
- 5
5
6 \end{array} \right) , \quad \mathbf { v } _ { 3 } = \left( \begin{array} { r } 0
- 3
Question 18
View details
18 \end{array} \right) \quad \text { and } \quad \mathbf { v } _ { 4 } = \left( \begin{array} { r } 0
- 2
10
8 \end{array} \right) .$$
  1. Show that the dimension of \(V\) is 3 .
  2. Express \(\mathbf { v } _ { 4 }\) as a linear combination of \(\mathbf { v } _ { 1 } , \mathbf { v } _ { 2 }\) and \(\mathbf { v } _ { 3 }\).
  3. Write down a basis for \(V\).
    Let \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & 0
    2 & - 5 & - 3 & - 2
    0 & 5 & 15 & 10
    2 & 6 & 18 & 8 \end{array} \right)\).
  4. Find the general solution of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\).
    The set of elements of \(\mathbb { R } ^ { 4 }\) which are not solutions of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\) is denoted by \(W\).
  5. State, with a reason, whether \(W\) is a vector space.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.