A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q2
CAIE FP1 2018 June — Question 2
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2018
Session
June
Topic
Sequences and series, recurrence and convergence
2
Verify that $$\frac { n ( \mathrm { e } - 1 ) + \mathrm { e } } { n ( n + 1 ) \mathrm { e } ^ { n + 1 } } = \frac { 1 } { n \mathrm { e } ^ { n } } - \frac { 1 } { ( n + 1 ) \mathrm { e } ^ { n + 1 } }$$ Let \(S _ { N } = \sum _ { n = 1 } ^ { N } \frac { n ( \mathrm { e } - 1 ) + \mathrm { e } } { n ( n + 1 ) \mathrm { e } ^ { n + 1 } }\).
Express \(S _ { N }\) in terms of \(N\) and e.
Let \(S = \lim _ { N \rightarrow \infty } S _ { N }\).
Find the least value of \(N\) such that \(( N + 1 ) \left( S - S _ { N } \right) < 10 ^ { - 3 }\).
This paper
(13 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11 EITHER
Q11 OR
Q18