A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q3
CAIE FP1 2018 June — Question 3
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2018
Session
June
Topic
Complex numbers 2
3
Use de Moivre's theorem to show that $$\cos 4 \theta = \cos ^ { 4 } \theta - 6 \cos ^ { 2 } \theta \sin ^ { 2 } \theta + \sin ^ { 4 } \theta$$
Hence find all the roots of the equation $$x ^ { 4 } - 6 x ^ { 2 } + 1 = 0$$ in the form \(\tan q \pi\), where \(q\) is a positive rational number.
This paper
(13 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11 EITHER
Q11 OR
Q18