CAIE FP1 2018 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicVectors: Lines & Planes

7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = a \mathbf { i } + 9 \mathbf { j } + 13 \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 3 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } )$$ respectively. It is given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  1. Find the value of the constant \(a\).
    The point \(P\) has position vector \(3 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }\).
  2. Find the perpendicular distance from \(P\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 2 }\).