7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations
$$\mathbf { r } = a \mathbf { i } + 9 \mathbf { j } + 13 \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 3 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } )$$
respectively. It is given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
- Find the value of the constant \(a\).
The point \(P\) has position vector \(3 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }\). - Find the perpendicular distance from \(P\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
- Find the perpendicular distance from \(P\) to \(l _ { 2 }\).