CAIE FP1 (Further Pure Mathematics 1) 2011 June

Question 1
View details
1 Find \(2 ^ { 2 } + 4 ^ { 2 } + \ldots + ( 2 n ) ^ { 2 }\). Hence find \(1 ^ { 2 } - 2 ^ { 2 } + 3 ^ { 2 } - 4 ^ { 2 } + \ldots - ( 2 n ) ^ { 2 }\), simplifying your answer.
Question 2
View details
2 Let \(\mathbf { A } = \left( \begin{array} { l l } 2 & 3
0 & 1 \end{array} \right)\). Prove by mathematical induction that, for every positive integer \(n\), $$\mathbf { A } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 3 \left( 2 ^ { n } - 1 \right)
0 & 1 \end{array} \right)$$
Question 3
View details
3 Find a cubic equation with roots \(\alpha , \beta\) and \(\gamma\), given that $$\alpha + \beta + \gamma = - 6 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 38 , \quad \alpha \beta \gamma = 30 .$$ Hence find the numerical values of the roots.
Question 4
View details
4 The curve \(C\) has equation $$2 x y ^ { 2 } + 3 x ^ { 2 } y = 1$$ Show that, at the point \(A ( - 1,1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
Question 5
View details
5 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Use the fact that \(\tan ^ { 2 } x = \sec ^ { 2 } x - 1\) to show that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { n - 1 } - I _ { n - 2 }$$ Show that \(I _ { 8 } = \frac { 1 } { 7 } - \frac { 1 } { 5 } + \frac { 1 } { 3 } - 1 + \frac { 1 } { 4 } \pi\).
Question 6
View details
6 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$\begin{array} { l l } C _ { 1 } : & r = a
C _ { 2 } : & r = 2 a \cos 2 \theta , \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi \end{array}$$ where \(a\) is a positive constant. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram. The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point with polar coordinates ( \(a , \beta\) ). State the value of \(\beta\). Show that the area of the region bounded by the initial line, the arc of \(C _ { 1 }\) from \(\theta = 0\) to \(\theta = \beta\), and the arc of \(C _ { 2 }\) from \(\theta = \beta\) to \(\theta = \frac { 1 } { 4 } \pi\) is $$a ^ { 2 } \left( \frac { 1 } { 6 } \pi - \frac { 1 } { 8 } \sqrt { } 3 \right)$$
Question 7
View details
7 A curve \(C\) has parametric equations \(x = \mathrm { e } ^ { t } \cos t , y = \mathrm { e } ^ { t } \sin t\), for \(0 \leqslant t \leqslant \pi\). Find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 8
View details
8 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 10 \sin t$$ Find the particular solution, given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 2\) when \(t = 0\). State an approximate solution for large positive values of \(t\).
Question 9
View details
9 The curve \(C\) with equation $$y = \frac { a x ^ { 2 } + b x + c } { x - 1 }$$ where \(a , b\) and \(c\) are constants, has two asymptotes. It is given that \(y = 2 x - 5\) is one of these asymptotes.
  1. State the equation of the other asymptote.
  2. Find the value of \(a\) and show that \(b = - 7\).
  3. Given also that \(C\) has a turning point when \(x = 2\), find the value of \(c\).
  4. Find the set of values of \(k\) for which the line \(y = k\) does not intersect \(C\).
Question 10
View details
10 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$l _ { 1 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad l _ { 2 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \mu ( 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } ) .$$ Find a cartesian equation of the plane \(\Pi\) containing \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vector of the foot of the perpendicular from the point with position vector \(\mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k }\) to \(\Pi\). The line \(l _ { 3 }\) has equation \(\mathbf { r } = \mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k } + v ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )\). Find the shortest distance between \(l _ { 1 }\) and \(l _ { 3 }\).
Question 11 EITHER
View details
A \(3 \times 3\) matrix \(\mathbf { A }\) has eigenvalues \(- 1,1,2\), with corresponding eigenvectors $$\left( \begin{array} { r } 0
1
- 1 \end{array} \right) , \quad \left( \begin{array} { r } - 1
0
1 \end{array} \right) , \quad \left( \begin{array} { l } 1
1
0 \end{array} \right) ,$$ respectively. Find
  1. the matrix \(\mathbf { A }\),
  2. \(\mathbf { A } ^ { 2 n }\), where \(n\) is a positive integer.
Question 11 OR
View details
Determine the rank of the matrix $$\mathbf { A } = \left( \begin{array} { l l l l } 1 & - 1 & - 1 & 1
2 & - 1 & - 4 & 3
3 & - 3 & - 2 & 2
5 & - 4 & - 6 & 5 \end{array} \right)$$ Show that if $$\mathbf { A x } = p \left( \begin{array} { l } 1
2
3
5 \end{array} \right) + q \left( \begin{array} { l } - 1
- 1
- 3
- 4 \end{array} \right) + r \left( \begin{array} { l } - 1
- 4
- 2
- 6 \end{array} \right)$$ where \(p , q\) and \(r\) are given real numbers, then $$\mathbf { x } = \left( \begin{array} { c } p + \lambda
q + \lambda
r + \lambda
\lambda \end{array} \right) ,$$ where \(\lambda\) is real. Find the values of \(p , q\) and \(r\) such that $$p \left( \begin{array} { l } 1
2
3
5 \end{array} \right) + q \left( \begin{array} { l } - 1
- 1
- 3
- 4 \end{array} \right) + r \left( \begin{array} { l } - 1
- 4
- 2
- 6 \end{array} \right) = \left( \begin{array} { r } 3
7
8
Question 15
View details
15 \end{array} \right) .$$ Find the solution \(\mathbf { x } = \left( \begin{array} { l } \alpha
\beta
\gamma
\delta \end{array} \right)\) of the equation \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } 3
7
8
15 \end{array} \right)\) for which \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = \frac { 11 } { 4 }\).