Find second derivative

Differentiate an expression twice to find d²y/dx² and use it for concavity analysis.

28 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
Edexcel C1 2014 January Q2
5 marks Easy -1.3
2. $$y = 2 x ^ { 2 } - \frac { 4 } { \sqrt { } x } + 1 , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in its simplest form.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), giving each term in its simplest form.
    \includegraphics[max width=\textwidth, alt={}, center]{6081d81b-51d2-4140-9834-71ef7fd700b0-05_104_97_2613_1784}
Edexcel C1 2012 June Q4
6 marks Easy -1.3
4. $$y = 5 x ^ { 3 } - 6 x ^ { \frac { 4 } { 3 } } + 2 x - 3$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) giving each term in its simplest form.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
Edexcel C1 Q10
13 marks Moderate -0.8
10. For the curve \(C\) with equation \(y = \mathrm { f } ( x )\), \(\frac { d y } { d x } = x ^ { 3 } + 2 x - 7 .\)
  1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (2)
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \geq 2\) for all values of \(x\).
    (1)
    Given that the point \(P ( 2,4 )\) lies on \(C\),
  3. find \(y\) in terms of \(x\),
    (5)
  4. find an equation for the normal to \(C\) at \(P\) in the form \(a x + b y + c = 0\), where \(a\), \(b\) and \(c\) are integers.
    (5)
    \end{tabular} & Leave blank
    \hline \end{tabular} \end{center}
    1. continued
Edexcel C2 2007 January Q1
7 marks Easy -1.8
1. $$f ( x ) = x ^ { 3 } + 3 x ^ { 2 } + 5$$ Find
  1. \(\mathrm { f } ^ { \prime \prime } ( x )\),
  2. \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\).
OCR C1 2006 January Q3
5 marks Easy -1.2
3 Given that \(y = 3 x ^ { 5 } - \sqrt { x } + 15\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR C1 Q7
8 marks Moderate -0.8
  1. Given that
$$y = \sqrt { x } - \frac { 4 } { \sqrt { x } }$$
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\),
  3. show that $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y = 0 .$$
OCR MEI C2 2006 January Q6
4 marks Moderate -0.3
6 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } - 6 x + 9\). Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show that the curve has a stationary point of inflection when \(x = 3\).
OCR MEI C2 2006 June Q8
5 marks Easy -1.2
8 Given that \(y = 6 x ^ { 3 } + \sqrt { x } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR MEI C2 2007 June Q2
5 marks Easy -1.3
2 Given that \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
OCR MEI C2 Q10
5 marks Easy -1.3
10 Given tha \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
OCR MEI C2 Q12
5 marks Easy -1.2
12 Given tha \(y = 6 x ^ { 3 } + \sqrt { x } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR C1 2014 June Q6
6 marks Easy -1.3
6 Given that \(y = 6 x ^ { 3 } + \frac { 4 } { \sqrt { x } } + 5 x\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    \(7 \quad A\) is the point \(( 5,7 )\) and \(B\) is the point \(( - 1 , - 5 )\).
  3. Find the coordinates of the mid-point of the line segment \(A B\).
  4. Find an equation of the line through \(A\) that is perpendicular to the line segment \(A B\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
OCR H240/02 Q2
7 marks Moderate -0.8
2 A curve has equation \(y = x ^ { 5 } - 5 x ^ { 4 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Verify that the curve has a stationary point when \(x = 4\).
  3. Determine the nature of this stationary point.
Edexcel Paper 1 Specimen Q1
7 marks Easy -1.2
  1. The curve \(C\) has equation
$$y = 3 x ^ { 4 } - 8 x ^ { 3 } - 3$$
  1. Find (i) \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    (ii) \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. Verify that \(C\) has a stationary point when \(x = 2\)
  3. Determine the nature of this stationary point, giving a reason for your answer.
Edexcel Paper 2 2021 October Q5
7 marks Moderate -0.8
  1. The curve \(C\) has equation
$$y = 5 x ^ { 4 } - 24 x ^ { 3 } + 42 x ^ { 2 } - 32 x + 11 \quad x \in \mathbb { R }$$
  1. Find
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
    1. Verify that \(C\) has a stationary point at \(x = 1\)
    2. Show that this stationary point is a point of inflection, giving reasons for your answer.
OCR MEI AS Paper 1 2020 November Q7
6 marks Moderate -0.3
7 In this question you must show detailed reasoning.
A curve has equation \(y = 4 x ^ { 3 } - 6 x ^ { 2 } - 9 x + 4\).
  1. Sketch the gradient function for this curve, clearly indicating the points where the gradient is zero.
  2. Find the set of values of \(x\) for which the gradient function is decreasing. Give your answer using set notation.
OCR MEI Paper 3 Specimen Q6
5 marks Standard +0.3
6 Fig. 6 shows the curve with equation \(y = x ^ { 4 } - 6 x ^ { 2 } + 4 x + 5\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b4e10fd2-4144-4019-bf00-070f93a2b05d-06_869_750_370_242} \captionsetup{labelformat=empty} \caption{Fig. 6
Find the coordinates of the points of inflection.}
\end{figure}
AQA C1 2016 June Q8
12 marks Moderate -0.8
8 The gradient, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), at the point \(( x , y )\) on a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 54 + 27 x - 6 x ^ { 2 }$$
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. The curve passes through the point \(P \left( - 1 \frac { 1 } { 2 } , 4 \right)\). Verify that the curve has a minimum point at \(P\).
    1. Show that at the points on the curve where \(y\) is decreasing $$2 x ^ { 2 } - 9 x - 18 > 0$$
    2. Solve the inequality \(2 x ^ { 2 } - 9 x - 18 > 0\).
AQA C2 2015 June Q4
10 marks Moderate -0.3
4 A curve is defined for \(x > 0\). The gradient of the curve at the point \(( x , y )\) is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x ^ { 2 } } - \frac { x } { 4 }$$
  1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. The curve has a stationary point \(M\) whose \(y\)-coordinate is \(\frac { 5 } { 2 }\).
    1. Find the \(x\)-coordinate of \(M\).
    2. Use your answers to parts (a) and (b)(i) to show that \(M\) is a maximum point.
    3. Find the equation of the curve.
Edexcel C2 Q6
9 marks Moderate -0.8
  1. \(\quad \mathrm { f } ( x ) = 2 - x + 3 x ^ { \frac { 2 } { 3 } } , \quad x > 0\).
    1. Find \(f ^ { \prime } ( x )\) and \(f ^ { \prime \prime } ( x )\).
    2. Find the coordinates of the turning point of the curve \(y = \mathrm { f } ( x )\).
    3. Determine whether the turning point is a maximum or minimum point.
    4. The points \(P , Q\) and \(R\) have coordinates \(( - 5,2 ) , ( - 3,8 )\) and \(( 9,4 )\) respectively.
    5. Show that \(\angle P Q R = 90 ^ { \circ }\).
    Given that \(P , Q\) and \(R\) all lie on circle \(C\),
  2. find the coordinates of the centre of \(C\),
  3. show that the equation of \(C\) can be written in the form $$x ^ { 2 } + y ^ { 2 } - 4 x - 6 y = k$$ where \(k\) is an integer to be found.
WJEC Unit 3 Specimen Q7
16 marks Standard +0.8
7. The curve \(y = a x ^ { 4 } + b x ^ { 3 } + 18 x ^ { 2 }\) has a point of inflection at \(( 1,11 )\).
  1. Show that \(2 a + b + 6 = 0\).
  2. Find the values of the constants \(a\) and \(b\) and show that the curve has another point of inflection at \(( 3,27 )\).
  3. Sketch the curve, identifying all the stationary points including their nature.
OCR C3 2010 January Q5
9 marks Moderate -0.3
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence show that the only stationary point on the curve is the point for which \(x = 0\).
  2. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and hence find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary point.
OCR AS Pure 2017 Specimen Q1
4 marks Easy -1.3
1 Given that \(\mathrm { f } ( x ) = 6 x ^ { 3 } - 5 x\), find
  1. \(\mathrm { f } ^ { \prime } ( x )\),
  2. \(f ^ { \prime \prime } ( 2 )\).
Edexcel C3 Q1
10 marks Moderate -0.8
  1. The function f, defined for \(x \in \mathbb { R } , x > 0\), is such that
$$\mathrm { f } ^ { \prime } ( x ) = x ^ { 2 } - 2 + \frac { 1 } { x ^ { 2 } }$$
  1. Find the value of \(\mathrm { f } ^ { \prime \prime } ( x )\) at \(x = 4\).
  2. Given that \(\mathrm { f } ( 3 ) = 0\), find \(\mathrm { f } ( x )\).
  3. Prove that f is an increasing function.
AQA C1 2007 June Q4
13 marks Moderate -0.8
4 A model helicopter takes off from a point \(O\) at time \(t = 0\) and moves vertically so that its height, \(y \mathrm {~cm}\), above \(O\) after time \(t\) seconds is given by $$y = \frac { 1 } { 4 } t ^ { 4 } - 26 t ^ { 2 } + 96 t , \quad 0 \leqslant t \leqslant 4$$
  1. Find:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} t }\);
      (3 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
      (2 marks)
  2. Verify that \(y\) has a stationary value when \(t = 2\) and determine whether this stationary value is a maximum value or a minimum value.
    (4 marks)
  3. Find the rate of change of \(y\) with respect to \(t\) when \(t = 1\).
  4. Determine whether the height of the helicopter above \(O\) is increasing or decreasing at the instant when \(t = 3\).