Single-piece PDF with k

The PDF has a single formula (one piece) defined on one interval, and the question asks to find or show the value of a constant k using the integral equals 1 property.

48 questions

CAIE S2 2020 June Q6
6 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { k } { x ^ { 2 } } & 1 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are positive constants.
  1. Show that \(k = \frac { a } { a - 1 }\).
  2. Find \(\mathrm { E } ( X )\) in terms of \(a\).
  3. Find the 60th percentile of \(X\) in terms of \(a\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE S2 2024 June Q7
7 The probability density function, f , of a random variable \(X\) is given by $$f ( x ) = \begin{cases} k ( 1 + \cos x ) & 0 \leqslant x \leqslant \pi
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { \pi }\).
  2. Verify that the median of \(X\) lies between 0.83 and 0.84 .
  3. Find the exact value of \(\mathrm { E } ( X )\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE S2 2024 June Q5
5 A random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} a x - x ^ { 3 } & 0 \leqslant x \leqslant \sqrt { 2 }
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Show that \(a = 2\) .
  2. Find the median of \(X\) .
  3. Find the exact value of \(\mathrm { E } ( X )\).
CAIE S2 2014 June Q6
6 The time, \(T\) hours, spent by people on a visit to a museum has probability density function $$\mathrm { f } ( t ) = \begin{cases} k t \left( 16 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 4
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 64 }\).
  2. Calculate the probability that two randomly chosen people each spend less than 1 hour on a visit to the museum.
  3. Find the mean time spent on a visit to the museum.
CAIE S2 2015 June Q7
7 The probability density function of the random variable \(X\) is given by $$f ( x ) = \begin{cases} \frac { 3 } { 4 } x ( c - x ) & 0 \leqslant x \leqslant c
0 & \text { otherwise } \end{cases}$$ where \(c\) is a constant.
  1. Show that \(c = 2\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\) and state the median of \(X\).
  3. Find \(\mathrm { P } ( X < 1.5 )\).
  4. Hence write down the value of \(\mathrm { P } ( 0.5 < X < 1 )\).
CAIE S2 2016 June Q6
6 In each turn of a game, a coin is pushed and slides across a table. The distance, \(X\) metres, travelled by the coin has probability density function given by $$f ( x ) = \begin{cases} k x ^ { 2 } ( 2 - x ) & 0 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. State the greatest possible distance travelled by the coin in one turn.
  2. Show that \(k = \frac { 3 } { 4 }\).
  3. Find the mean distance travelled by the coin in one turn.
  4. Out of 400 turns, find the expected number of turns in which the distance travelled by the coin is less than 1 metre.
CAIE S2 2017 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{395f7f2c-42db-4fb6-9b22-3b0f46ad16d3-08_355_670_260_735} The diagram shows the graph of the probability density function, f , of a continuous random variable \(X\), where f is defined by $$\mathrm { f } ( x ) = \begin{cases} k \left( x - x ^ { 2 } \right) & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$
  1. Show that the value of the constant \(k\) is 6 .
  2. State the value of \(\mathrm { E } ( X )\) and find \(\operatorname { Var } ( X )\).
  3. Find \(\mathrm { P } ( 0.4 < X < 2 )\).
CAIE S2 2018 June Q7
7 A random variable \(X\) has probability density function defined by $$f ( x ) = \begin{cases} k \left( \frac { 1 } { x ^ { 2 } } + \frac { 1 } { x ^ { 3 } } \right) & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 8 } { 7 }\).
  2. Find \(\mathrm { E } ( X )\).
  3. Three values of \(X\) are chosen at random. Find the probability that one of these values is less than 1.5 and the other two are greater than 1.5.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE S2 2011 June Q7
7 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} k ( 1 - x ) & - 1 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 2 }\).
  2. Find \(\mathrm { P } \left( X > \frac { 1 } { 2 } \right)\).
  3. Find the mean of \(X\).
  4. Find \(a\) such that \(\mathrm { P } ( X < a ) = \frac { 1 } { 4 }\).
CAIE S2 2012 June Q4
4 The random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { k } { ( x + 1 ) ^ { 2 } } & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = 2\).
  2. Find \(a\) such that \(\mathrm { P } ( X < a ) = \frac { 1 } { 5 }\).

  3. \includegraphics[max width=\textwidth, alt={}, center]{18cef198-5ca2-4700-88e9-1a2bd55f841e-2_367_524_1548_849} The diagram shows the graph of \(y = \mathrm { f } ( x )\). The median of \(X\) is denoted by \(m\). Use the diagram to explain whether \(m < 0.5\), \(m = 0.5\) or \(m > 0.5\).
CAIE S2 2021 November Q7
7
  1. The probability density function of the random variable \(X\) is given by $$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x \leqslant 2
    0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
    1. Show that \(k = \frac { 3 } { 16 }\).
    2. Find \(\mathrm { E } ( X )\).
  2. The random variable \(Y\) has the following properties.
    • \(Y\) takes values between 0 and 5 only.
    • The probability density function of \(Y\) is symmetrical.
    Given that \(\mathrm { P } ( Y < a ) = 0.2\), find \(\mathrm { P } ( 2.5 < Y < 5 - a )\) illustrating your method with a sketch on the axes provided.
    \includegraphics[max width=\textwidth, alt={}, center]{cea87af9-4b2a-4297-91e9-4eb5744b9e48-11_369_837_621_694}
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE S2 2004 June Q7
7 The queuing time, \(T\) minutes, for a person queuing at a supermarket checkout has probability density function given by $$f ( t ) = \begin{cases} c t \left( 25 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 5
0 & \text { otherwise } \end{cases}$$ where \(c\) is a constant.
  1. Show that the value of \(c\) is \(\frac { 4 } { 625 }\).
  2. Find the probability that a person will have to queue for between 2 and 4 minutes.
  3. Find the mean queuing time.
CAIE S2 2005 June Q7
7 The random variable \(X\) denotes the number of hours of cloud cover per day at a weather forecasting centre. The probability density function of \(X\) is given by $$f ( x ) = \begin{cases} \frac { ( x - 18 ) ^ { 2 } } { k } & 0 \leqslant x \leqslant 24
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = 2016\).
  2. On how many days in a year of 365 days can the centre expect to have less than 2 hours of cloud cover?
  3. Find the mean number of hours of cloud cover per day.
CAIE S2 2006 June Q5
5 The random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} 4 x ^ { k } & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = 3\).
  2. Show that the mean of \(X\) is 0.8 and find the variance of \(X\).
  3. Find the upper quartile of \(X\).
  4. Find the interquartile range of \(X\).
CAIE S2 2008 June Q7
7 If Usha is stung by a bee she always develops an allergic reaction. The time taken in minutes for Usha to develop the reaction can be modelled using the probability density function given by $$\mathrm { f } ( t ) = \begin{cases} \frac { k } { t + 1 } & 0 \leqslant t \leqslant 4
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { \ln 5 }\).
  2. Find the probability that it takes more than 3 minutes for Usha to develop a reaction.
  3. Find the median time for Usha to develop a reaction.
CAIE S2 2009 June Q5
5 The time in minutes taken by candidates to answer a question in an examination has probability density function given by $$\mathrm { f } ( t ) = \begin{cases} k \left( 6 t - t ^ { 2 } \right) & 3 \leqslant t \leqslant 6
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 18 }\).
  2. Find the mean time.
  3. Find the probability that a candidate, chosen at random, takes longer than 5 minutes to answer the question.
  4. Is the upper quartile of the times greater than 5 minutes, equal to 5 minutes or less than 5 minutes? Give a reason for your answer.
CAIE S2 2010 June Q5
5 The random variable \(T\) denotes the time in seconds for which a firework burns before exploding. The probability density function of \(T\) is given by $$\mathrm { f } ( t ) = \begin{cases} k \mathrm { e } ^ { 0.2 t } & 0 \leqslant t \leqslant 5
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 5 ( \mathrm { e } - 1 ) }\).
  2. Sketch the probability density function.
  3. \(80 \%\) of fireworks burn for longer than a certain time before they explode. Find this time.
CAIE S2 2010 June Q5
5 The time, in minutes, taken by volunteers to complete a task is modelled by the random variable \(X\) with probability density function given by $$\mathrm { f } ( x ) = \begin{cases} \frac { k } { x ^ { 4 } } & x \geqslant 1
0 & \text { otherwise. } \end{cases}$$
  1. Show that \(k = 3\).
  2. Find \(\mathrm { E } ( X )\) and \(\operatorname { Var } ( X )\).
CAIE S2 2012 June Q6
6 At a certain shop the weekly demand, in kilograms, for flour is modelled by the random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} k x ^ { - \frac { 1 } { 2 } } & 4 \leqslant x \leqslant 25
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 6 }\).
  2. Calculate the mean weekly demand for flour at the shop.
  3. At the beginning of one week, the shop has 20 kg of flour in stock. Find the probability that this will not be enough to meet the demand for that week.
  4. Give a reason why the model may not be realistic.
CAIE S2 2012 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{7333c047-edad-4385-b3f8-248e8725cfcb-3_412_718_1037_715} A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} k \sin x & 0 \leqslant x \leqslant \frac { 2 } { 3 } \pi
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant, as shown in the diagram.
  1. Show that \(k = \frac { 2 } { 3 }\).
  2. Show that the median of \(X\) is 1.32 , correct to 3 significant figures.
  3. Find \(\mathrm { E } ( X )\).
CAIE S2 2013 June Q5
5 A random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} \frac { k } { x ^ { 3 } } & x \geqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = 2\).
  2. Find \(\mathrm { P } ( 1 \leqslant X \leqslant 2 )\).
  3. Find \(\mathrm { E } ( X )\).
CAIE S2 2014 June Q7
7 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { k } { x } & 1 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are positive constants.
  1. Show that \(k = \frac { 1 } { \ln a }\).
  2. Find \(\mathrm { E } ( X )\) in terms of \(a\).
  3. Find the median of \(X\) in terms of \(a\).
CAIE S2 2015 June Q6
6 The waiting time, \(T\) minutes, for patients at a doctor's surgery has probability density function given by $$\mathrm { f } ( t ) = \begin{cases} k \left( 225 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 15
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 2250 }\).
  2. Find the probability that a patient has to wait for more than 10 minutes.
  3. Find the mean waiting time.
CAIE S2 2016 June Q5
3 marks
5 The time, \(T\) minutes, taken by people to complete a test has probability density function given by $$\mathrm { f } ( t ) = \begin{cases} k \left( 10 t - t ^ { 2 } \right) & 5 \leqslant t \leqslant 10
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 250 }\).
  2. Find \(\mathrm { E } ( T )\).
  3. Find the probability that a randomly chosen value of \(T\) lies between \(\mathrm { E } ( T )\) and the median of \(T\). [3]
  4. State the greatest possible length of time taken to complete the test.
    \(6 X\) and \(Y\) are independent random variables with distributions \(\operatorname { Po } ( 1.6 )\) and \(\operatorname { Po } ( 2.3 )\) respectively.
CAIE S2 2018 June Q6
6 The time, in minutes, taken by people to complete a test is modelled by the continuous random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} \frac { k } { x ^ { 2 } } & 5 \leqslant x \leqslant 10
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = 10\).
  2. Show that \(\mathrm { E } ( X ) = 10 \ln 2\).
  3. Find \(\mathrm { P } ( X > 9 )\).
  4. Given that \(\mathrm { P } ( X < a ) = 0.6\), find \(a\).