6
\includegraphics[max width=\textwidth, alt={}, center]{395f7f2c-42db-4fb6-9b22-3b0f46ad16d3-08_355_670_260_735}
The diagram shows the graph of the probability density function, f , of a continuous random variable \(X\), where f is defined by
$$\mathrm { f } ( x ) = \begin{cases} k \left( x - x ^ { 2 } \right) & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$
- Show that the value of the constant \(k\) is 6 .
- State the value of \(\mathrm { E } ( X )\) and find \(\operatorname { Var } ( X )\).
- Find \(\mathrm { P } ( 0.4 < X < 2 )\).