CAIE S2 2004 June — Question 7

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2004
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

7 The queuing time, \(T\) minutes, for a person queuing at a supermarket checkout has probability density function given by $$f ( t ) = \begin{cases} c t \left( 25 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 5
0 & \text { otherwise } \end{cases}$$ where \(c\) is a constant.
  1. Show that the value of \(c\) is \(\frac { 4 } { 625 }\).
  2. Find the probability that a person will have to queue for between 2 and 4 minutes.
  3. Find the mean queuing time.