CAIE S2 2011 June — Question 7

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2011
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

7 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} k ( 1 - x ) & - 1 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 2 }\).
  2. Find \(\mathrm { P } \left( X > \frac { 1 } { 2 } \right)\).
  3. Find the mean of \(X\).
  4. Find \(a\) such that \(\mathrm { P } ( X < a ) = \frac { 1 } { 4 }\).