CAIE S2 2006 June — Question 5

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2006
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

5 The random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} 4 x ^ { k } & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = 3\).
  2. Show that the mean of \(X\) is 0.8 and find the variance of \(X\).
  3. Find the upper quartile of \(X\).
  4. Find the interquartile range of \(X\).