Common perpendicular to two skew lines

A question is this type if and only if it asks to find points P on line l₁ and Q on line l₂ such that PQ is perpendicular to both lines, or to find the equation of this perpendicular.

13 questions · Challenging +1.6

Sort by: Default | Easiest first | Hardest first
CAIE P3 2004 November Q9
10 marks Challenging +1.3
9 The lines \(l\) and \(m\) have vector equations $$\mathbf { r } = 2 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } + s ( \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + t ( - 2 \mathbf { i } + \mathbf { j } + \mathbf { k } )$$ respectively.
  1. Show that \(l\) and \(m\) do not intersect. The point \(P\) lies on \(l\) and the point \(Q\) has position vector \(2 \mathbf { i } - \mathbf { k }\).
  2. Given that the line \(P Q\) is perpendicular to \(l\), find the position vector of \(P\).
  3. Verify that \(Q\) lies on \(m\) and that \(P Q\) is perpendicular to \(m\).
CAIE Further Paper 1 2022 November Q6
15 marks Challenging +1.3
6 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 2 \mathbf { i } + \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } + 2 \mathbf { k } )\) and \(\mathbf { r } = 2 \mathbf { j } + 6 \mathbf { k } + \mu ( \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length \(P Q\).
    The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\).
    The plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\).
    1. Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \mathbf { s b } + \mathbf { t c }\).
    2. Find an equation of \(\Pi _ { 2 }\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Edexcel AEA 2006 June Q5
15 marks Challenging +1.8
5.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have vector equations \(L _ { 1 } : \quad \mathbf { r } = - 2 \mathbf { i } + 11.5 \mathbf { j } + \lambda ( 3 \mathbf { i } - 4 \mathbf { j } - \mathbf { k } )\), \(L _ { 2 } : \quad \mathbf { r } = 11.5 \mathbf { i } + 3 \mathbf { j } + 8.5 \mathbf { k } + \mu ( 7 \mathbf { i } + 8 \mathbf { j } - 11 \mathbf { k } )\),
where \(\lambda\) and \(\mu\) are parameters.
(a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) do not intersect.
(b)Show that the vector \(( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) . The point \(A\) lies on \(L _ { 1 }\) ,the point \(B\) lies on \(L _ { 2 }\) and \(A B\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) .
(c)Find the position vector of the point \(A\) and the position vector of the point \(B\) .
(8) \includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-4_554_1017_404_571} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \sin ( \ln x ) , \quad x \geq 1 .$$ The point \(Q\) ,on \(C\) ,is a maximum.
Edexcel AEA 2015 June Q10
Challenging +1.8
10
- 3 \end{array} \right) + \lambda \left( \begin{array} { r } 2
- 5
4 \end{array} \right)
& L _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 1
2
3 \end{array} \right) + \mu \left( \begin{array} { l } 1
2
2 \end{array} \right) \end{aligned}$$ (a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) are perpendicular.\\ (b)Show that \(L _ { 1 }\) and \(L _ { 2 }\) are skew lines. The point \(A\) with position vector \(- \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\) lies on \(L _ { 2 }\) and the point \(X\) lies on \(L _ { 1 }\) such that \(\overrightarrow { A X }\) is perpendicular to \(L _ { 1 }\)\\ (c)Find the position vector of \(X\) .\\ (d)Find \(| \overrightarrow { A X } |\) The point \(B\)(distinct from \(A\) )also lies on \(L _ { 2 }\) and \(| \overrightarrow { B X } | = | \overrightarrow { A X } |\)\\ (e)Find the position vector of \(B\) .\\ (f)Find the cosine of angle \(A X B\) . 7.(a)Use the substitution \(x = \sec \theta\) to show that $$\int _ { \sqrt { 2 } } ^ { 2 } \frac { 1 } { \left( x ^ { 2 } - 1 \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { \sqrt { 6 } - 2 } { \sqrt { 3 } }$$ (b)Use integration by parts to show that $$\int \operatorname { cosec } \theta \cot ^ { 2 } \theta \mathrm {~d} \theta = \frac { 1 } { 2 } [ \ln | \operatorname { cosec } \theta + \cot \theta | - \operatorname { cosec } \theta \cot \theta ] + c$$ (6) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3e18cb7c-1a67-4152-8628-76847e368882-6_592_1196_772_420} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \frac { 1 } { \left( x ^ { 2 } - 1 \right) ^ { \frac { 3 } { 2 } } }\) for \(x > 1\)\\ The region \(R\) ,shown shaded in Figure 2,is bounded by the curve,the \(x\)-axis and the lines \(x = \sqrt { 2 }\) and \(x = 2\)\\ The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.\\ (c)Show that the volume of the solid formed is $$\pi \left[ \frac { 3 } { 8 } \ln \left( \frac { 1 + \sqrt { 2 } } { \sqrt { 3 } } \right) + \frac { 7 } { 36 } - \frac { \sqrt { 2 } } { 8 } \right]$$
CAIE FP1 2009 June Q11
12 marks Challenging +1.8
11 The line \(l _ { 1 }\) is parallel to the vector \(4 \mathbf { j } - \mathbf { k }\) and passes through the point \(A\) whose position vector is \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\). The variable line \(l _ { 2 }\) is parallel to the vector \(\mathbf { i } - ( 2 \sin t ) \mathbf { j }\), where \(0 \leqslant t < 2 \pi\), and passes through the point \(B\) whose position vector is \(\mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\), respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence find the values of \(t\) for which \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  3. For the case \(t = \frac { 1 } { 4 } \pi\), find the perpendicular distance from \(A\) to the plane \(B P Q\), giving your answer correct to 3 decimal places.
CAIE FP1 2010 June Q12 EITHER
Challenging +1.8
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } + \mathbf { j }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(- \mathbf { i } - \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + 2 \mathbf { k }\). The point \(P\) is on \(l _ { 1 }\) and the point \(Q\) is on \(l _ { 2 }\) and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find the position vector of \(Q\).
  3. Show that the perpendicular distance from \(Q\) to the plane containing \(A B\) and the line \(l _ { 1 }\) is \(\sqrt { } 3\).
CAIE FP1 2011 June Q6
9 marks Challenging +1.8
6 The line \(l _ { 1 }\) passes through the point with position vector \(8 \mathbf { i } + 8 \mathbf { j } - 7 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } + 3 \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(7 \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } - \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). In either order,
  1. show that \(P Q = 13\),
  2. find the position vectors of \(P\) and \(Q\).
CAIE FP1 2015 June Q11 OR
Challenging +1.8
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 8 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } )\) and \(\mathbf { r } = 5 \mathbf { i } + 3 \mathbf { j } - 14 \mathbf { k } + \mu ( 2 \mathbf { j } - 3 \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vector of the point \(P\) and the position vector of the point \(Q\). The points with position vectors \(8 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\) and \(5 \mathbf { i } + 3 \mathbf { j } - 14 \mathbf { k }\) are denoted by \(A\) and \(B\) respectively. Find
  1. \(\overrightarrow { A P } \times \overrightarrow { A Q }\) and hence the area of the triangle \(A P Q\),
  2. the volume of the tetrahedron \(A P Q B\). (You are given that the volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.) \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series.
    Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2019 June Q3
8 marks Challenging +1.2
3 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 6 \mathbf { i } + 2 \mathbf { j } + 7 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + \mu ( - 6 \mathbf { j } + \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\).
CAIE FP1 2003 November Q9
11 marks Challenging +1.8
9 The line \(l _ { 1 }\) passes through the point \(A\) with position vector \(\mathbf { i } - \mathbf { j } - 2 \mathbf { k }\) and is parallel to the vector \(3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k }\). The variable line \(l _ { 2 }\) passes through the point \(( 1 + 5 \cos t ) \mathbf { i } - ( 1 + 5 \sin t ) \mathbf { j } - 14 \mathbf { k }\), where \(0 \leqslant t < 2 \pi\), and is parallel to the vector \(15 \mathbf { i } + 8 \mathbf { j } - 3 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\) respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect, and find the maximum length of \(P Q\) as \(t\) varies.
  3. The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and \(P Q\); the plane \(\Pi _ { 2 }\) contains \(l _ { 2 }\) and \(P Q\). Find the angle between the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), correct to the nearest tenth of a degree.
CAIE FP1 2004 November Q11
12 marks Challenging +1.8
11 The line \(l _ { 1 }\) passes through the point \(A\), whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } - 4 \mathbf { k }\), and is parallel to the vector \(3 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\), whose position vector is \(2 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k }\), and is parallel to the vector \(\mathbf { i } - \mathbf { j } - 4 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\), and the plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find a vector perpendicular to \(\Pi _ { 1 }\).
  3. Find the perpendicular distance from \(B\) to \(\Pi _ { 1 }\).
  4. Find the angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2014 November Q10
12 marks Challenging +1.3
10 The line \(l _ { 1 }\) is parallel to the vector \(\mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }\) and passes through the point \(A\), whose position vector is \(3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\). The line \(l _ { 2 }\) is parallel to the vector \(- 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\) and passes through the point \(B\), whose position vector is \(- 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find
  1. the length \(P Q\),
  2. the cartesian equation of the plane \(\Pi\) containing \(P Q\) and \(l _ { 2 }\),
  3. the perpendicular distance of \(A\) from \(\Pi\).
CAIE FP1 2016 November Q11 EITHER
Challenging +1.8
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$ respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Show that the position vector of \(P\) is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and find the position vector of \(Q\). Find, in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), an equation of the plane \(\Pi\) which passes through \(P\) and is perpendicular to \(l _ { 1 }\). The plane \(\Pi\) meets the plane \(\mathbf { r } = p \mathbf { i } + q \mathbf { j }\) in the line \(l _ { 3 }\). Find a vector equation of \(l _ { 3 }\).