6 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 2 \mathbf { i } + \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } + 2 \mathbf { k } )\) and \(\mathbf { r } = 2 \mathbf { j } + 6 \mathbf { k } + \mu ( \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )\) respectively.
The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
- Find the length \(P Q\).
The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\).
The plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\). - Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \mathbf { s b } + \mathbf { t c }\).
- Find an equation of \(\Pi _ { 2 }\), giving your answer in the form \(a x + b y + c z = d\).
- Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).