9 The lines \(l\) and \(m\) have vector equations
$$\mathbf { r } = 2 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } + s ( \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + t ( - 2 \mathbf { i } + \mathbf { j } + \mathbf { k } )$$
respectively.
- Show that \(l\) and \(m\) do not intersect.
The point \(P\) lies on \(l\) and the point \(Q\) has position vector \(2 \mathbf { i } - \mathbf { k }\).
- Given that the line \(P Q\) is perpendicular to \(l\), find the position vector of \(P\).
- Verify that \(Q\) lies on \(m\) and that \(P Q\) is perpendicular to \(m\).