Complete table then estimate

A question is this type if and only if it first requires completing missing values in a table of coordinates, then using those values with trapezium rule.

39 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
Edexcel C12 2015 June Q4
6 marks Easy -1.2
4. (a) Sketch the graph of \(y = \frac { 1 } { x } , x > 0\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 1 } { x }\), with the values for \(y\) rounded to 3 decimal places where necessary.
\(x\)11.522.53
\(y\)10.6670.50.40.333
(b) Use the trapezium rule with all the values of \(y\) from the table to find an approximate value, to 2 decimal places, for \(\int _ { 1 } ^ { 3 } \frac { 1 } { x } \mathrm {~d} x\)
Edexcel C12 2016 June Q4
8 marks Moderate -0.8
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aa75f1c1-ee97-4fee-af98-957e6a3fbba1-05_476_1338_251_360} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \sqrt { x + 2 } , x \geqslant - 2\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the line \(x = 6\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \sqrt { x + 2 }\)
\(x\)- 20246
\(y\)01.414222.8284
  1. Complete the table above, giving the missing value of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all of the values of \(y\) in the completed table, to find an approximate value for the area of \(R\), giving your answer to 3 decimal places. Use your answer to part (b) to find approximate values of
    1. \(\int _ { - 2 } ^ { 6 } \frac { \sqrt { x + 2 } } { 2 } \mathrm {~d} x\)
    2. \(\int _ { - 2 } ^ { 6 } ( 2 + \sqrt { x + 2 } ) \mathrm { d } x\)
Edexcel C12 2018 June Q1
5 marks Easy -1.2
  1. The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 1 } { \sqrt { ( x + 1 ) } }\), with the values
    for \(y\) rounded to 3 decimal places where necessary.
\(x\)03691215
\(y\)10.50.3780.3160.277
  1. Complete the table by giving the value of \(y\) corresponding to \(x = 15\)
  2. Use the trapezium rule with all the values of \(y\) from the completed table to find an approximate value for $$\int _ { 0 } ^ { 15 } \frac { 1 } { \sqrt { ( x + 1 ) } } \mathrm { d } x$$ giving your answer to 2 decimal places.
Edexcel P2 2020 October Q2
4 marks Moderate -0.8
2. $$y = \frac { 2 ^ { x } } { \sqrt { \left( 5 x ^ { 2 } + 3 \right) } }$$
  1. Complete the table below,giving the values of \(y\) to 3 decimal places.
    \(x\)- 0.2500.250.50.75
    \(y\)0.4620.6530.698
  2. Use the trapezium rule,with all the values of \(y\) from the completed table,to find an approximate value for
    . $$\int _ { - 0.25 } ^ { 0.75 } \frac { 2 ^ { x } } { \sqrt { \left( 5 x ^ { 2 } + 3 \right) } } \mathrm { d } x$$
Edexcel P2 2018 Specimen Q3
7 marks Moderate -0.8
3. $$y = \sqrt { \left( 3 ^ { x } + x \right) }$$
  1. Complete the table below, giving the values of \(y\) to 3 decimal places.
    \(x\)00.250.50.751
    \(y\)11.2512
  2. Use the trapezium rule with all the values of \(y\) from your table to find an approximation for the value of $$\int _ { 0 } ^ { 1 } \sqrt { \left( 3 ^ { x } + x \right) } \mathrm { d } x$$ You must show clearly how you obtained your answer.
  3. Explain how the trapezium rule could be used to obtain a more accurate estimate for the value of $$\int _ { 0 } ^ { 1 } \sqrt { \left( 3 ^ { x } + x \right) } d x$$
    \includegraphics[max width=\textwidth, alt={}]{0aafa21b-25f4-4f36-b914-bbaf6cae7a66-10_2673_1948_107_118}
Edexcel C2 2009 January Q3
6 marks Moderate -0.8
3. \(y = \sqrt { } \left( 10 x - x ^ { 2 } \right)\).
  1. Complete the table below, giving the values of \(y\) to 2 decimal places.
    \(x\)11.41.82.22.63
    \(y\)33.474.39
  2. Use the trapezium rule, with all the values of \(y\) from your table, to find an approximation for the value of \(\int _ { 1 } ^ { 3 } \sqrt { } \left( 10 x - x ^ { 2 } \right) \mathrm { d } x\).
Edexcel C2 2011 January Q6
9 marks Moderate -0.8
6. $$y = \frac { 5 } { 3 x ^ { 2 } - 2 }$$
  1. Complete the table below, giving the values of \(y\) to 2 decimal places.
    \(x\)22.252.52.753
    \(y\)0.50.380.2
  2. Use the trapezium rule, with all the values of \(y\) from your table, to find an approximate value for \(\int _ { 2 } ^ { 3 } \frac { 5 } { 3 x ^ { 2 } - 2 } \mathrm {~d} x\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{be8f9187-055a-476f-974d-22e8e16e9996-08_537_743_941_603} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \frac { 5 } { 3 x ^ { 2 } - 2 } , x > 1\).
    At the points \(A\) and \(B\) on the curve, \(x = 2\) and \(x = 3\) respectively.
    The region \(S\) is bounded by the curve, the straight line through \(B\) and ( 2,0 ), and the line through \(A\) parallel to the \(y\)-axis. The region \(S\) is shown shaded in Figure 2.
  3. Use your answer to part (b) to find an approximate value for the area of \(S\).
Edexcel C2 2007 June Q5
9 marks Moderate -0.3
5. The curve \(C\) has equation $$y = x \sqrt { } \left( x ^ { 3 } + 1 \right) , \quad 0 \leqslant x \leqslant 2$$
  1. Complete the table below, giving the values of \(y\) to 3 decimal places at \(x = 1\) and \(x = 1.5\).
    \(x\)00.511.52
    \(y\)00.5306
  2. Use the trapezium rule, with all the \(y\) values from your table, to find an approximation for the value of \(\int _ { 0 } ^ { 2 } x \sqrt { } \left( x ^ { 3 } + 1 \right) \mathrm { d } x\), giving your answer to 3 significant figures. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{22ebc302-765c-4734-b312-b286ccb20be9-06_1110_644_1119_648} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows the curve \(C\) with equation \(y = x \sqrt { } \left( x ^ { 3 } + 1 \right) , 0 \leqslant x \leqslant 2\), and the straight line segment \(l\), which joins the origin and the point \(( 2,6 )\). The finite region \(R\) is bounded by \(C\) and \(l\).
  3. Use your answer to part (b) to find an approximation for the area of \(R\), giving your answer to 3 significant figures.
    (3) \section*{LU}
Edexcel C2 2008 June Q2
6 marks Easy -1.2
2. $$y = \sqrt { } \left( 5 ^ { x } + 2 \right)$$
  1. Complete the table below, giving the values of \(y\) to 3 decimal places.
    \(x\)00.511.52
    \(y\)2.6463.630
  2. Use the trapezium rule, with all the values of \(y\) from your table, to find an approximation for the value of \(\int _ { 0 } ^ { 2 } \sqrt { } \left( 5 ^ { x } + 2 \right) \mathrm { d } x\).
Edexcel C2 2010 June Q1
6 marks Easy -1.2
1. $$y = 3 ^ { x } + 2 x$$
  1. Complete the table below, giving the values of \(y\) to 2 decimal places.
    \(x\)00.20.40.60.81
    \(y\)11.655
  2. Use the trapezium rule, with all the values of \(y\) from your table, to find an approximate value for \(\int _ { 0 } ^ { 1 } \left( 3 ^ { x } + 2 x \right) d x\).
Edexcel C2 2012 June Q7
6 marks Moderate -0.8
7. $$y = \sqrt { } \left( 3 ^ { x } + x \right)$$
  1. Complete the table below, giving the values of \(y\) to 3 decimal places.
    \(x\)00.250.50.751
    \(y\)11.2512
  2. Use the trapezium rule with all the values of \(y\) from your table to find an approximation for the value of \(\int _ { 0 } ^ { 1 } \sqrt { } \left( 3 ^ { x } + x \right) \mathrm { d } x\) You must show clearly how you obtained your answer.
Edexcel C2 2013 June Q2
5 marks Moderate -0.8
2. $$y = \frac { x } { \sqrt { ( 1 + x ) } }$$
  1. Complete the table below with the value of \(y\) corresponding to \(x = 1.3\), giving your answer to 4 decimal places.
    \(x\)11.11.21.31.41.5
    \(y\)0.70710.75910.80900.90370.9487
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an approximate value for $$\int _ { 1 } ^ { 1.5 } \frac { x } { \sqrt { } ( 1 + x ) } \mathrm { d } x$$ giving your answer to 3 decimal places.
    You must show clearly each stage of your working.
Edexcel C2 2014 June Q3
5 marks Easy -1.2
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f07cc9ed-a820-46c8-a3a3-3c780cf20fa7-05_821_1273_118_338} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \sqrt { } ( 2 x - 1 ) , x \geqslant 0.5\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the lines with equations \(x = 2\) and \(x = 10\). The table below shows corresponding values of \(x\) and \(y\) for \(y = \sqrt { } ( 2 x - 1 )\).
\(x\)246810
\(y\)\(\sqrt { } 3\)\(\sqrt { } 11\)\(\sqrt { } 19\)
  1. Complete the table with the values of \(y\) corresponding to \(x = 4\) and \(x = 8\).
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to find an approximate value for the area of \(R\), giving your answer to 2 decimal places.
  3. State whether your approximate value in part (b) is an overestimate or an underestimate for the area of \(R\).
Edexcel C2 2014 June Q1
5 marks Easy -1.2
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e6b490c0-80c4-4e15-b587-ac052ee27db7-02_738_1257_274_340} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \sqrt { } \left( x ^ { 2 } + 1 \right) , x \geqslant 0\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) The table below shows corresponding values for \(x\) and \(y\) for \(y = \sqrt { } \left( x ^ { 2 } + 1 \right)\).
\(x\)11.251.51.752
\(y\)1.4141.8032.0162.236
  1. Complete the table above, giving the missing value of \(y\) to 3 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to find an approximate value for the area of \(R\), giving your answer to 2 decimal places.
Edexcel C2 2016 June Q2
6 marks Moderate -0.8
2. The curve \(C\) has equation $$y = 8 - 2 ^ { x - 1 } , \quad 0 \leqslant x \leqslant 4$$
  1. Complete the table below with the value of \(y\) corresponding to \(x = 1\)
    \(x\)01234
    \(y\)7.5640
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to find an approximate value for \(\int _ { 0 } ^ { 4 } \left( 8 - 2 ^ { x - 1 } \right) \mathrm { d } x\) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{582cda45-80fc-43a8-90e6-1cae08cb1534-03_650_606_1016_671} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve \(C\) with equation \(y = 8 - 2 ^ { x - 1 } , \quad 0 \leqslant x \leqslant 4\) The curve \(C\) meets the \(x\)-axis at the point \(A\) and meets the \(y\)-axis at the point \(B\).
    The region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\) and the straight line through \(A\) and \(B\).
  3. Use your answer to part (b) to find an approximate value for the area of \(R\).
Edexcel C2 2018 June Q1
5 marks Moderate -0.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8daf56fa-bfce-454e-bbb8-fecd8170d77e-02_575_812_214_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation $$y = \frac { ( x + 2 ) ^ { \frac { 3 } { 2 } } } { 4 } , \quad x \geqslant - 2$$ The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the line with equation \(x = 10\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { ( x + 2 ) ^ { \frac { 3 } { 2 } } } { 4 }\)
  1. Complete the table, giving values of \(y\) corresponding to \(x = 2\) and \(x = 6\)
    \(x\)- 22610
    \(y\)0\(6 \sqrt { } 3\)
  2. Use the trapezium rule, with all the values of \(y\) from the completed table, to find an approximate value for the area of \(R\), giving your answer to 3 decimal places.
Edexcel C34 2017 January Q5
9 marks Moderate -0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e30f0c28-1695-40a1-8e9a-6ea7e29042bf-08_579_1038_258_452} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = x \cos x , \quad x \in \mathbb { R }$$ The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\) and the \(x\)-axis for \(\frac { 3 \pi } { 2 } \leqslant x \leqslant \frac { 5 \pi } { 2 }\)
  1. Complete the table below with the exact value of \(y\) corresponding to \(x = \frac { 7 \pi } { 4 }\) and with the exact value of \(y\) corresponding to \(x = \frac { 9 \pi } { 4 }\)
    \(x\)\(\frac { 3 \pi } { 2 }\)\(\frac { 7 \pi } { 4 }\)\(2 \pi\)\(\frac { 9 \pi } { 4 }\)\(\frac { 5 \pi } { 2 }\)
    \(y\)0\(2 \pi\)0
  2. Use the trapezium rule, with all five \(y\) values in the completed table, to find an approximate value for the area of \(R\), giving your answer to 4 significant figures.
  3. Find $$\int x \cos x d x$$
  4. Using your answer from part (c), find the exact area of the region \(R\).
Edexcel C34 2015 June Q13
14 marks Standard +0.3
13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c08fbab-283e-4c92-89a4-10f68f37e133-22_536_929_223_504} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the curve with equation \(y = 2 - \ln x , x > 0\) The finite region \(R\), shown shaded in Figure 5, is bounded by the curve, the \(x\)-axis and the line with equation \(x = \mathrm { e }\). The table below shows corresponding values of \(x\) and \(y\) for \(y = 2 - \ln x\)
\(x\)e\(\frac { \mathrm { e } + \mathrm { e } ^ { 2 } } { 2 }\)\(\mathrm { e } ^ { 2 }\)
\(y\)10
  1. Complete the table giving the value of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 3 decimal places.
  3. Use integration by parts to show that \(\int ( \ln x ) ^ { 2 } \mathrm {~d} x = x ( \ln x ) ^ { 2 } - 2 x \ln x + 2 x + c\) The area \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
  4. Use calculus to find the exact volume of the solid generated. Write your answer in the form \(\pi \mathrm { e } ( p \mathrm { e } + q )\), where \(p\) and \(q\) are integers to be found.
Edexcel C34 2017 October Q6
10 marks Moderate -0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2a6d0dba-d948-4124-9740-a88c17b0be65-16_618_1018_228_456} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation \(y = 2 \mathrm { e } ^ { - x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the value of \(y\) corresponding to \(x = \frac { \pi } { 2 }\), giving your answer to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)00.766790.159400
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places.
  3. Given \(y = 2 \mathrm { e } ^ { - x } \sqrt { \sin x }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) for \(0 < x < \pi\). The curve \(C\) has a maximum turning point when \(x = a\).
  4. Use your answer to part (c) to find the value of \(a\), giving your answer to 3 decimal places.
Edexcel C34 Specimen Q2
11 marks Moderate -0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-04_479_855_310_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the values of \(y\) corresponding to \(x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 2 }\), giving your answers to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)08.872070
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places. The curve \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\), has a maximum turning point at \(Q\), shown in Figure 1.
  3. Find the \(x\) coordinate of \(Q\).
Edexcel C4 2008 January Q1
6 marks Moderate -0.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ac7d862f-d10d-45ed-9077-ae4c7413cbf6-02_390_675_246_630} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve shown in Figure 1 has equation \(y = \mathrm { e } ^ { x } \sqrt { } ( \sin x ) , 0 \leqslant x \leqslant \pi\). The finite region \(R\) bounded by the curve and the \(x\)-axis is shown shaded in Figure 1.
  1. Complete the table below with the values of \(y\) corresponding to \(x = \frac { \pi } { 4 }\) and \(\frac { \pi } { 2 }\), giving your answers to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)08.872070
  2. Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places.
Edexcel C4 2012 January Q6
12 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8c963567-d751-4898-b7a7-7095d90514f0-09_639_1179_246_386} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve with equation \(y = \frac { 2 \sin 2 x } { ( 1 + \cos x ) } , 0 \leqslant x \leqslant \frac { \pi } { 2 }\).
The finite region \(R\), shown shaded in Figure 3, is bounded by the curve and the \(x\)-axis. The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 2 \sin 2 x } { ( 1 + \cos x ) }\).
\(x\)0\(\frac { \pi } { 8 }\)\(\frac { \pi } { 4 }\)\(\frac { 3 \pi } { 8 }\)\(\frac { \pi } { 2 }\)
\(y\)01.171571.022800
  1. Complete the table above giving the missing value of \(y\) to 5 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 4 decimal places.
  3. Using the substitution \(u = 1 + \cos x\), or otherwise, show that $$\int \frac { 2 \sin 2 x } { ( 1 + \cos x ) } d x = 4 \ln ( 1 + \cos x ) - 4 \cos x + k$$ where \(k\) is a constant.
  4. Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.
Edexcel C4 2014 January Q4
11 marks Standard +0.2
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{245bbe52-3a14-4494-af17-7711caf79b22-10_752_1182_226_395} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) }\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis, the line \(x = - 3 \ln 2\) and the \(y\)-axis. The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) }\)
\(x\)\(- 3 \ln 2\)\(- 2 \ln 2\)\(- \ln 2\)0
\(y\)2.13331.00790.6667
  1. Complete the table above by giving the missing value of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 2 decimal places.
    1. Using the substitution \(u = 1 + 3 \mathrm { e } ^ { - x }\), or otherwise, find $$\int \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) } \mathrm { d } x$$
    2. Hence find the value of the area of \(R\).
Edexcel C4 2008 June Q1
4 marks Moderate -0.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fb1924cc-9fa3-4fde-ba4d-6fb095f7f70b-02_519_451_210_749} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = \mathrm { e } ^ { 0.5 x ^ { 2 } }\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\).
  1. Complete the table with the values of \(y\) corresponding to \(x = 0.8\) and \(x = 1.6\).
    \(x\)00.40.81.21.62
    \(y\)\(\mathrm { e } ^ { 0 }\)\(\mathrm { e } ^ { 0.08 }\)\(\mathrm { e } ^ { 0.72 }\)\(\mathrm { e } ^ { 2 }\)
  2. Use the trapezium rule with all the values in the table to find an approximate value for the area of \(R\), giving your answer to 4 significant figures.
Edexcel C4 2009 June Q2
8 marks Moderate -0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-03_655_1079_207_427} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the finite region \(R\) bounded by the \(x\)-axis, the \(y\)-axis and the curve with equation \(y = 3 \cos \left( \frac { x } { 3 } \right) , 0 \leqslant x \leqslant \frac { 3 \pi } { 2 }\).
The table shows corresponding values of \(x\) and \(y\) for \(y = 3 \cos \left( \frac { x } { 3 } \right)\).
\(x\)0\(\frac { 3 \pi } { 8 }\)\(\frac { 3 \pi } { 4 }\)\(\frac { 9 \pi } { 8 }\)\(\frac { 3 \pi } { 2 }\)
\(y\)32.771642.121320
  1. Complete the table above giving the missing value of \(y\) to 5 decimal places.
  2. Using the trapezium rule, with all the values of \(y\) from the completed table, find an approximation for the area of \(R\), giving your answer to 3 decimal places.
  3. Use integration to find the exact area of \(R\).