Edexcel C4 2012 January — Question 6

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2012
SessionJanuary
TopicArea Under & Between Curves

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8c963567-d751-4898-b7a7-7095d90514f0-09_639_1179_246_386} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve with equation \(y = \frac { 2 \sin 2 x } { ( 1 + \cos x ) } , 0 \leqslant x \leqslant \frac { \pi } { 2 }\).
The finite region \(R\), shown shaded in Figure 3, is bounded by the curve and the \(x\)-axis. The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 2 \sin 2 x } { ( 1 + \cos x ) }\).
\(x\)0\(\frac { \pi } { 8 }\)\(\frac { \pi } { 4 }\)\(\frac { 3 \pi } { 8 }\)\(\frac { \pi } { 2 }\)
\(y\)01.171571.022800
  1. Complete the table above giving the missing value of \(y\) to 5 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 4 decimal places.
  3. Using the substitution \(u = 1 + \cos x\), or otherwise, show that $$\int \frac { 2 \sin 2 x } { ( 1 + \cos x ) } d x = 4 \ln ( 1 + \cos x ) - 4 \cos x + k$$ where \(k\) is a constant.
  4. Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.