Edexcel C4 2014 January — Question 4

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2014
SessionJanuary
TopicArea Under & Between Curves

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{245bbe52-3a14-4494-af17-7711caf79b22-10_752_1182_226_395} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) }\)
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis, the line \(x = - 3 \ln 2\) and the \(y\)-axis. The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) }\)
\(x\)\(- 3 \ln 2\)\(- 2 \ln 2\)\(- \ln 2\)0
\(y\)2.13331.00790.6667
  1. Complete the table above by giving the missing value of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 2 decimal places.
    1. Using the substitution \(u = 1 + 3 \mathrm { e } ^ { - x }\), or otherwise, find $$\int \frac { 4 \mathrm { e } ^ { - x } } { 3 \sqrt { } \left( 1 + 3 \mathrm { e } ^ { - x } \right) } \mathrm { d } x$$
    2. Hence find the value of the area of \(R\).