Edexcel C34 2017 October — Question 6

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionOctober
TopicArea Under & Between Curves

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2a6d0dba-d948-4124-9740-a88c17b0be65-16_618_1018_228_456} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation \(y = 2 \mathrm { e } ^ { - x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the value of \(y\) corresponding to \(x = \frac { \pi } { 2 }\), giving your answer to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)00.766790.159400
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places.
  3. Given \(y = 2 \mathrm { e } ^ { - x } \sqrt { \sin x }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) for \(0 < x < \pi\). The curve \(C\) has a maximum turning point when \(x = a\).
  4. Use your answer to part (c) to find the value of \(a\), giving your answer to 3 decimal places.