Edexcel C12 2016 June — Question 4

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2016
SessionJune
TopicArea Under & Between Curves

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aa75f1c1-ee97-4fee-af98-957e6a3fbba1-05_476_1338_251_360} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \sqrt { x + 2 } , x \geqslant - 2\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the line \(x = 6\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \sqrt { x + 2 }\)
\(x\)- 20246
\(y\)01.414222.8284
  1. Complete the table above, giving the missing value of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all of the values of \(y\) in the completed table, to find an approximate value for the area of \(R\), giving your answer to 3 decimal places. Use your answer to part (b) to find approximate values of
    1. \(\int _ { - 2 } ^ { 6 } \frac { \sqrt { x + 2 } } { 2 } \mathrm {~d} x\)
    2. \(\int _ { - 2 } ^ { 6 } ( 2 + \sqrt { x + 2 } ) \mathrm { d } x\)