A question is this type if and only if it asks to use a given iterative formula with a specified starting value to find a root to a stated accuracy, showing intermediate iterations.
122 questions · Moderate -0.1
| Line 10 | Input \(A\) and \(B\) |
| Line 20 | Calculate \(C = B \div A\) |
| Line 30 | Let \(D = \operatorname { INT } ( C )\) |
| Line 40 | Calculate \(E = A \times D\) |
| Line 50 | Calculate \(F = B - E\) |
| Line 60 | Output the value of \(F\) |
| Line 70 | Replace \(B\) by the value of \(D\) |
| Line 80 | If \(B = 0\) then stop, otherwise go back to line 20 |
| Step 1 | Let \(N = 0 , T = 0\) and \(S = 0\). | |||
| Step 2 |
| |||
| Step 3 | Increase \(N\) by 1 , increase \(T\) by \(X\) and increase \(S\) by \(X ^ { 2 }\). | |||
| Step 4 | If there are still numbers in the list then go back to Step 2. Otherwise go to Step 5. | |||
| Step 5 |
| |||
| Step 6 | Output \(M\) and \(D\). |
| Step 1 | Input two positive integers \(A\) and \(B\) |
| Step 2 | Let \(C = A - B\) |
| Step 3 | If \(C < 0\), let \(D = B\) then let \(E = B + C\) |
| Step 4 | If \(C = 0\), jump to Step 10 |
| Step 5 | If \(C > 0\), let \(D = A\) and let \(E = B\) |
| Step 6 | Let \(F = D - E\) |
| Step 7 | If \(F < 0\), let \(D = E\) then let \(E = F + D\) and go back to Step 6 |
| Step 8 | If \(F = 0\), let \(F = D\) then jump to Step 11 |
| Step 9 | If \(F > 0\), let \(D = F\) then go back to Step 6 |
| Step 10 | Let \(F = A\) |
| Step 11 | Let \(G = A \div F\) |
| Step 12 | Let \(M = G \times B\) |
| Step 13 | Print the values \(F\) and \(M\) |
| Line 10 | Input a positive integer, \(N\) |
| Line 20 | Let \(C = 1\) |
| Line 30 | If \(C ^ { 2 } \geqslant N\) jump to line 110 |
| Line 40 | Let \(X = \sqrt { \left( N - C ^ { 2 } \right) }\) [you may record your answer as a surd or a decimal] |
| Line 50 | Let \(Y = \operatorname { INT } ( X )\) |
| Line 60 | If \(X = Y\) jump to line 100 |
| Line 70 | If \(C > Y\) jump to line 110 |
| Line 80 | Add 1 to \(C\) |
| Line 90 | Go back to line 30 |
| Line 100 | Print \(C , X\) and stop |
| Line 110 | Print 'FAIL' and stop |
| Step 1 | Input A |
| Step 2 | Input B , where \(\mathrm { B } > \mathrm { A }\) |
| Step 3 | Let \(\mathrm { R } = \mathrm { A } + \left( \frac { \sqrt { 5 } - 1 } { 2 } \right) \times ( \mathrm { B } - \mathrm { A } )\) |
| Step 4 | Let \(\mathrm { L } = \mathrm { A } + \mathrm { B } - \mathrm { R }\) |
| Step 5 | Find \(f ( \mathrm {~L} )\) and \(f ( \mathrm { R } )\) |
| Step 6 | If \(\mathrm { f } ( \mathrm { L } ) \leqslant \mathrm { f } ( \mathrm { R } )\) then let \(\mathrm { B } = \mathrm { R }\) and go to Step 8 |
| Step 7 | If \(\mathrm { f } ( \mathrm { L } ) > \mathrm { f } ( \mathrm { R } )\) then let \(\mathrm { A } = \mathrm { L }\) and go to Step 8 |
| Step 8 | If \(\mathrm { B } - \mathrm { A } < 0.1\) then go to step 10 |
| Step 9 | Go to step 3 |
| Step 10 | Print \(\frac { ( \mathrm { A } + \mathrm { B } ) } { 2 }\) and stop |
| Step 1 | Set \(i = 1\) |
| Step 2 | Input \(m _ { i }\) and \(c _ { i }\) |
| Step 3 | If \(i = 3\) then go to Step 6 |
| Step 4 | Set \(i = i + 1\) |
| Step 5 | Go to Step 2 |
| Step 6 | Set \(j = 1\) |
| Step 7 | Set \(a = j + 1\) |
| Step 8 | If \(a > 3\) then set \(a = a - 3\) |
| Step 9 | Set \(b = j + 2\) |
| Step 10 | If \(b > 3\) then set \(b = b - 3\) |
| Step 11 | Set \(d _ { j } = m _ { b } - m _ { a }\) |
| Step 12 | If \(d _ { j } = 0\) then go to Step 20 |
| Step 13 | Set \(x _ { j } = \frac { c _ { a } - c _ { b } } { d _ { j } }\) |
| Step 14 | Set \(y _ { j } = m _ { a } \times x _ { j } + c _ { a }\) |
| Step 15 | Record \(\left( x _ { j } , y _ { j } \right)\) in the print area |
| Step 16 | If \(j = 3\) then go to Step 19 |
| Step 17 | Set \(j = j + 1\) |
| Step 18 | Go to Step 7 |
| Step 19 | Stop |
| Step 20 | Record "parallel" in the print area |
| Step 21 | Go to Step 16 |
| \includegraphics[max width=\textwidth, alt={}]{b8614dd6-2197-40c3-a673-5bef3e3653a5-2_142_116_2560_157} | \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) |