11 Fig. 11 shows the graph of \(y = x ^ { 2 } - 4 x + x \ln x\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{95eb3bcc-6d3c-4f7e-9b27-5e046ab57ec5-08_697_463_338_246}
\captionsetup{labelformat=empty}
\caption{Fig. 11}
\end{figure}
- Show that the \(x\)-coordinate of the stationary point on the curve may be found from the equation \(2 x - 3 + \ln x = 0\).
- Use an iterative method to find the \(x\)-coordinate of the stationary point on the curve \(y = x ^ { 2 } - 4 x + x \ln x\), giving your answer correct to 4 decimal places.