Apply iteration to find root

A question is this type if and only if it asks to use a given iterative formula with a specified starting value to find a root to a stated accuracy, showing intermediate iterations.

122 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
OCR C3 Q9
13 marks Standard +0.3
  1. A curve has the equation \(y = ( 2 x + 3 ) \mathrm { e } ^ { - x }\).
    1. Find the exact coordinates of the stationary point of the curve.
    The curve crosses the \(y\)-axis at the point \(P\).
  2. Find an equation for the normal to the curve at \(P\). The normal to the curve at \(P\) meets the curve again at \(Q\).
  3. Show that the \(x\)-coordinate of \(Q\) lies between - 2 and - 1 .
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 3 - 3 \mathrm { e } ^ { x _ { n } } } { \mathrm { e } ^ { x _ { n } } - 2 }$$ with \(x _ { 0 } = - 1\), to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\). Give the value of \(x _ { 4 }\) to 2 decimal places.
  5. Show that your value for \(x _ { 4 }\) is the \(x\)-coordinate of \(Q\) correct to 2 decimal places.
OCR FP2 2007 June Q8
10 marks Standard +0.8
8 The iteration \(x _ { n + 1 } = \frac { 1 } { \left( x _ { n } + 2 \right) ^ { 2 } }\), with \(x _ { 1 } = 0.3\), is to be used to find the real root, \(\alpha\), of the equation \(x ( x + 2 ) ^ { 2 } = 1\).
  1. Find the value of \(\alpha\), correct to 4 decimal places. You should show the result of each step of the iteration process.
  2. Given that \(\mathrm { f } ( x ) = \frac { 1 } { ( x + 2 ) ^ { 2 } }\), show that \(\mathrm { f } ^ { \prime } ( \alpha ) \neq 0\).
  3. The difference, \(\delta _ { r }\), between successive approximations is given by \(\delta _ { r } = x _ { r + 1 } - x _ { r }\). Find \(\delta _ { 3 }\).
  4. Given that \(\delta _ { r + 1 } \approx \mathrm { f } ^ { \prime } ( \alpha ) \delta _ { r }\), find an estimate for \(\delta _ { 10 }\).
OCR FP2 2011 June Q3
8 marks Standard +0.3
3 It is given that \(\mathrm { F } ( x ) = 2 + \ln x\). The iteration \(x _ { n + 1 } = \mathrm { F } \left( x _ { n } \right)\) is to be used to find a root, \(\alpha\), of the equation \(x = 2 + \ln x\).
  1. Taking \(x _ { 1 } = 3.1\), find \(x _ { 2 }\) and \(x _ { 3 }\), giving your answers correct to 5 decimal places.
  2. The error \(e _ { n }\) is defined by \(e _ { n } = \alpha - x _ { n }\). Given that \(\alpha = 3.14619\), correct to 5 decimal places, use the values of \(e _ { 2 }\) and \(e _ { 3 }\) to make an estimate of \(\mathrm { F } ^ { \prime } ( \alpha )\) correct to 3 decimal places. State the true value of \(\mathrm { F } ^ { \prime } ( \alpha )\) correct to 4 decimal places.
  3. Illustrate the iteration by drawing a sketch of \(y = x\) and \(y = \mathrm { F } ( x )\), showing how the values of \(x _ { n }\) approach \(\alpha\). State whether the convergence is of the 'staircase' or 'cobweb' type.
OCR FP2 2009 January Q2
6 marks Standard +0.3
2 It is given that \(\alpha\) is the only real root of the equation \(x ^ { 5 } + 2 x - 28 = 0\) and that \(1.8 < \alpha < 2\).
  1. The iteration \(x _ { n + 1 } = \sqrt [ 5 ] { 28 - 2 x _ { n } }\), with \(x _ { 1 } = 1.9\), is to be used to find \(\alpha\). Find the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving the answers correct to 7 decimal places.
  2. The error \(e _ { n }\) is defined by \(e _ { n } = \alpha - x _ { n }\). Given that \(\alpha = 1.8915749\), correct to 7 decimal places, evaluate \(\frac { e _ { 3 } } { e _ { 2 } }\) and \(\frac { e _ { 4 } } { e _ { 3 } }\). Comment on these values in relation to the gradient of the curve with equation \(y = \sqrt [ 5 ] { 28 - 2 x }\) at \(x = \alpha\).
  3. Prove that the derivative of \(\sin ^ { - 1 } x\) is \(\frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  4. Given that $$\sin ^ { - 1 } 2 x + \sin ^ { - 1 } y = \frac { 1 } { 2 } \pi$$ find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = \frac { 1 } { 4 }\).
  5. By means of a suitable substitution, show that $$\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x$$ can be transformed to \(\int \cosh ^ { 2 } \theta \mathrm {~d} \theta\).
  6. Hence show that \(\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x = \frac { 1 } { 2 } x \sqrt { x ^ { 2 } - 1 } + \frac { 1 } { 2 } \cosh ^ { - 1 } x + c\).
OCR FP2 2010 January Q1
5 marks Standard +0.3
1 It is given that \(\mathrm { f } ( x ) = x ^ { 2 } - \sin x\).
  1. The iteration \(x _ { n + 1 } = \sqrt { \sin x _ { n } }\), with \(x _ { 1 } = 0.875\), is to be used to find a real root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\). Find \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving the answers correct to 6 decimal places.
  2. The error \(e _ { n }\) is defined by \(e _ { n } = \alpha - x _ { n }\). Given that \(\alpha = 0.876726\), correct to 6 decimal places, find \(e _ { 3 }\) and \(e _ { 4 }\). Given that \(\mathrm { g } ( x ) = \sqrt { \sin x }\), use \(e _ { 3 }\) and \(e _ { 4 }\) to estimate \(\mathrm { g } ^ { \prime } ( \alpha )\).
OCR FP2 2014 June Q9
12 marks Standard +0.3
9 The equation \(10 x - 8 \ln x = 28\) has a root \(\alpha\) in the interval [3,4]. The iteration \(x _ { n + 1 } = \mathrm { g } \left( x _ { n } \right)\), where \(\mathrm { g } ( x ) = 2.8 + 0.8 \ln x\) and \(x _ { 1 } = 3.8\), is to be used to find \(\alpha\).
  1. Find the value of \(\alpha\) correct to 5 decimal places. You should show the result of each step of the iteration to 6 decimal places.
  2. Illustrate this iteration by means of a sketch.
  3. The difference, \(\delta _ { r }\), between successive approximations is given by \(\delta _ { r } = x _ { r + 1 } - x _ { r }\). Find \(\delta _ { 3 }\).
  4. Given that \(\delta _ { n + 1 } \approx \mathrm {~g} ^ { \prime } ( \alpha ) \delta _ { n }\), for all positive integers \(n\), estimate the smallest value of \(n\) such that \(\delta _ { n } < 10 ^ { - 6 } \delta _ { 1 }\). \section*{OCR}
OCR MEI C4 Q3
Easy -1.8
3 Complete this table to show the next 3 values of the iteration $$x _ { n + 1 } = k x _ { n } \left( 1 - x _ { n } \right)$$ in the case when \(k = 3.2\) and \(x _ { 0 } = 0.5\). Give your answers to calculator accuracy.
\(n\)\(x _ { n }\)
00.5
10.8
20.512
3
4
5
AQA FP3 2008 January Q1
6 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x ^ { 2 } - y ^ { 2 }$$ and $$y ( 2 ) = 1$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 2.1 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 2.2 )\).
AQA FP3 2009 January Q1
8 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x ^ { 2 } + y ^ { 2 } } { x + y }$$ and $$y ( 1 ) = 3$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.2\), to obtain an approximation to \(y ( 1.2 )\).
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 1.2 )\), giving your answer to four decimal places.
AQA FP3 2010 January Q1
8 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x \ln ( 2 x + y )$$ and $$y ( 3 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
AQA FP3 2011 January Q1
5 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + \sqrt { y }$$ and $$y ( 3 ) = 4$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to three decimal places.
AQA FP3 2012 January Q1
6 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { y - x } { y ^ { 2 } + x }$$ and $$y ( 1 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
AQA FP3 2013 January Q1
6 marks Standard +0.3
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { 2 x + y }$$ and $$y ( 3 ) = 5$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.2\), to obtain an approximation to \(y ( 3.2 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 3.4 )\), giving your answer to three decimal places.
AQA FP3 2006 June Q2
9 marks Standard +0.3
2 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x ^ { 2 } + y ^ { 2 } } { x y }$$ and $$y ( 1 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\), giving your answer to four decimal places.
AQA FP3 2008 June Q1
6 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \ln ( x + y )$$ and $$y ( 2 ) = 3$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 2.1 )\), giving your answer to four decimal places.
(6 marks)
AQA FP3 2009 June Q1
6 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { x ^ { 2 } + y + 1 }$$ and $$y ( 3 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 3.2 )\), giving your answer to three decimal places.
AQA FP3 2010 June Q1
6 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + 3 + \sin y$$ and $$y ( 1 ) = 1$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
AQA FP3 2011 June Q1
5 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + \ln ( 1 + y )$$ and $$y ( 2 ) = 1$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 2.2 )\), giving your answer to four decimal places.
AQA FP3 2012 June Q1
5 marks Standard +0.3
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { ( 2 x ) } + \sqrt { y }$$ and $$y ( 2 ) = 9$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.25\), to obtain an approximation to \(y ( 2.25 )\), giving your answer to two decimal places.
AQA FP3 2013 June Q1
5 marks Standard +0.3
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = ( x - y ) \sqrt { x + y }$$ and $$y ( 2 ) = 1$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 2.2 )\), giving your answer to three decimal places.
AQA FP3 2014 June Q1
5 marks Standard +0.3
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { \ln ( x + y ) } { \ln y }$$ and $$y ( 6 ) = 3$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.4\), to obtain an approximation to \(y ( 6.4 )\), giving your answer to three decimal places.
[0pt] [5 marks]
AQA FP3 2015 June Q1
5 marks Standard +0.3
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x + y ^ { 2 } } { x }$$ and $$y ( 2 ) = 5$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.05\), to obtain an approximation to \(y ( 2.05 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 2.1 )\), giving your answer to three significant figures.
    [0pt] [3 marks]
OCR D1 2005 January Q12
Moderate -1.0
12 JANUARY 2005
Afternoon
1 hour 30 minutes
  • This insert should be used to answer Questions 4 and 7.
  • Write your name, centre number and candidate number in the spaces provided at the top of this page.
  • Write your answers to Questions 4 and 7 in the spaces provided in this insert, and attach it to your answer booklet.
4
  1. \(A\)\(B\)CD\(E\)\(F\)G\(H\)
    A-423----
    \(B\)4-1-3---
    C21-2-65-
    \(D\)3-2---4-
    E-3---8-7
    \(F\)--6-8--8
    \(G\)--54---9
    \(H\)----789-
  2. B \(E\) \(C\) F
    • \(H\) \(A\) •
    • \({ } ^ { \text {F } }\)
    H D
    G
  3. \(\_\_\_\_\)
  4. \(\_\_\_\_\)
  5. \(\_\_\_\_\) 7 (a) (i) \includegraphics[max width=\textwidth, alt={}, center]{197624b2-ca67-4bad-9c2c-dc68c10be0fd-11_191_1179_269_482} Do not cross out your working values (temporary labels) \includegraphics[max width=\textwidth, alt={}, center]{197624b2-ca67-4bad-9c2c-dc68c10be0fd-11_871_1557_612_335} Shortest route from \(A\) to \(E =\) \(\_\_\_\_\) Length = \(\_\_\_\_\) Shortest route from \(A\) to \(J =\) \(\_\_\_\_\) Length = \(\_\_\_\_\)
  6. Length of route \(=\) \(\_\_\_\_\) Vertices visited in order \(\_\_\_\_\)
  7. Explanation \(\_\_\_\_\) (b) \(\_\_\_\_\) Length = \(\_\_\_\_\)
OCR D1 2008 January Q7
13 marks Easy -1.2
7 In this question, the function INT( \(X\) ) is the largest integer less than or equal to \(X\). For example, $$\begin{aligned} & \operatorname { INT } ( 3.6 ) = 3 , \\ & \operatorname { INT } ( 3 ) = 3 , \\ & \operatorname { INT } ( - 3.6 ) = - 4 . \end{aligned}$$ Consider the following algorithm.
Step 1Input \(B\)
Step 2Input \(N\)
Step 3Calculate \(F = N \div B\)
Step 4Let \(G = \operatorname { INT } ( F )\)
Step 5Calculate \(H = B \times G\)
Step 6Calculate \(C = N - H\)
Step 7Output C
Step 8Replace \(N\) by the value of \(G\)
Step 9If \(N = 0\) then stop, otherwise go back to Step 3
  1. Apply the algorithm with the inputs \(B = 2\) and \(N = 5\). Record the values of \(F , G , H , C\) and \(N\) each time Step 9 is reached.
  2. Explain what happens when the algorithm is applied with the inputs \(B = 2\) and \(N = - 5\).
  3. Apply the algorithm with the inputs \(B = 10\) and \(N = 37\). Record the values of \(F , G , H , C\) and \(N\) each time Step 9 is reached. What are the output values when \(B = 10\) and \(N\) is any positive integer?
OCR D1 2009 January Q1
6 marks Easy -1.8
1 The flow chart shows an algorithm for which the input is a three-digit positive integer. \includegraphics[max width=\textwidth, alt={}, center]{43fe5fd5-4b98-4c3a-90ca-a1bd5cf065fe-2_1294_1493_356_328}
  1. Trace through the algorithm using the input \(A = 614\) to show that the output is 297 . Write down the values of \(A , B , C\) and \(D\) in each pass through the algorithm.
  2. What is the output when \(A = 616\) ?
  3. Explain why the counter \(C\) is needed.